RB44 Manual

From Silbo Networks
Revision as of 05:31, 3 January 2025 by Wikisysop (talk | contribs) (→‎5.8 Connection Diagnostics)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

This page contains the user manual for RB44.

Connecting with the device to the System (Laptop/Desktop).

To log in to SILBO_RB44 by connecting the router to your laptop or desktop via LAN or using Wi-Fi, please follow the steps below.

Connecting via LAN:

Connect your laptop's LAN port to one of the router's LAN interfaces. Ensure that you select any LAN interface (there are two available) while making sure the WAN interface is not used.

                                                                                                                                                         

How to connect with the SILBO_RB44 application

Once the LAN connection is established between the device and the laptop or the desktop

Please open the command prompt and ping go get the ip config of that device.

Type the command Ipconfig

How to connect with the SILBO RB44 application

It will provide the Ip address/url of that device through which the application can be accessed.

Log In

Open the web browser and type the IP address in the URL.

It will show the log in page of the application.

Give the valid credentials for the username and password to login to the application page.

Once the user credentials are provided it will direct to the landing page of the application.



The “Status” landing page shows all the detailed specification of the device like system, memory storage and connection tracking etc.

The application is divided in to 6 Modules.

  • Info
  • Settings
  • Maintenance
  • Status
  • Features
  • Logout

1.Info

The “Info” module provides the information about the devices to the user.

It provides all the specification related to the hardware, firmware, Networks and the Connection uptimes.

It has 3 submodules.

  • Overview
  • System Log
  • Kernel Log

1.1 Overview

In overview module it displays all the specification categorically of a device like System, Memory, storage, Connection tracking, DHCP Lease.

System

In this section it displays the hardware configured specification of the device.


The specifications details are as follows,

SN Field name Sample value Description
1 Hostname 31B30241002 This field displays the router serial number of the device
2 Model Silbo_RB44- EC200A This field displays the model number of the device
3 Firmware Version and IPK Version 1.17_1.15 This field displays the firmware version and IPK version
4 Kernel Version 4.14.180 This field displays the kernel version of the device
5 Local Time Tuesday, December 3, 2024 at 11:26:32 AM This field displays the local time
6 Uptime 0h 3m 10s This field displays the uptime of the device
7 Load Average 2.47 2.24 2.06 This field displays the average load

Memory

In this section it displays the memory configured specification of the device.


The specifications details are as follows.

SN Field name Sample value Description
1 Total Available 68676 kB / 124208 kB (55%) This field displays the total availability of memory space in the device
2 Free 59344 kB / 124208 kB (47%) This field displays the Free memory space in the device
3 Cached 312 kB / 124208 kB (0%) This field displays the Cached memory space in the device
4 Buffered 9332 kB / 124208 kB (7%) This field displays the Buffered memory space in the device


Storage

In this section it displays the status of storage as root and temporary usage specification of the device.


The specifications details are as follows.

SN Field name Sample value Description
1 Root Usage


796 kB / 15488 kB (5%)

This field displays the total root usage of the device
2 Temporary Usage


312 kB / 62104 kB (0%)

This field displays the total temporary usage of the device

Connection Tracking

In this section it displays the status of connection tracking for the device.


The specifications details are as follows.

SN Field name Sample value Description
1 Active Connection 48 / 16384 (0%) This field displays the active connection of the device.

DHCP Leases:

In this section it displays the DHCP lease of the temporary assignment of an IP address to a device on the network.

The specifications details are below.

SN Field name Sample value Description
1 Host Name KermaniK-LT This field displays the configured Host Name/Username for that device.
2 IPv4-Address 192.168.10.147 This field displays the IP address of the device.
3 MAC-Address 34:73:5a:bb: ab:7a This field displays the MAC-Address of the device.
4 Lease time remaining 11h 53m 49s This field displays the lease time remaining for the device.

1.2 System Log

This page provides on screen System logging information. In this page the user gets to view the system logs.

1.3 Kernel Log

This page provides on screen Kernel logging information.

In this page the user gets to view the Kernel logs.

2. Setting

In this “Setting” module the user can Configure/update all the required parameters related to Network, SIM Switch, Internet, VPN, Firewall, Loopback Rule, Remote monitoring, Tunnel as per requirement.

IT consist of 8 submodules.

  • Network
  • Sim Switch
  • Internet
  • VPN
  • Firewall
  • Loopback Rule
  • Remote Monitoring
  • Tunnel

2.1 Network

In this section the user does all the setting related configuration with reference to network like Ethernet Setting, Cellular Setting, Band lock and Operator Lock, Wi-Fi, Guest Wi-Fi, Wireless Schedule, SMS Setting, Loopback IP.

Ethernet Setting:

In this page it will display all the configured port that is attached with the device.

For this device 5 ports are configured.

Ethernet mode can be configured as WAN and as LAN as well.

Ethernet WAN Connection settings can be configured as DHCP, Static and PPOE.

EDIT:

To add a new Interface, click on ‘Add’.

To edit the existing device the user needs to click on the edit option.  

Once the changes are done click on the update button to save all the changes.

Click on the deleted button to delete the existing device detail.

Note: If required, add an interface in Settings-->Multi-WAN-->Failover

Specification details are given below:  Type: WAN

SN Field Name Sample Value Description
1 Physical Device Ex: eth0.5 This indicates a network interface on which our network is connected. This setting is by default (Editable).
2 Type WAN/LAN This designates whether the interface is part of the WAN or LAN.

WAN: Connects the device to the internet.

LAN: Connects the device to the internal network.

                                                                     Protocol: Static
3 Static IP Address Ex: 192.168.1.10 The manually assigned IP address for the interface.
4 Static Netmask Ex: 255.255.255.0 Subnet mask corresponding to the IP address.
5 Static Gateway Ex: 192.168.1.1 The IP address of the gateway (router) that the interface will use to send traffic outside its own subnet.
                                                                     Protocol: DHCP
6 DHCP Gateway Ex: 10.1.1.1 The IP address of the DHCP server (often the same as the router or gateway).
                                                                     Protocol: PPPoE
7 Username Any Name The username provided by your ISP for PPPoE authentication.
8 Password ***** The password provided by your ISP for PPPoE authentication.
9 Access Concentrator Typically, the name of the ISP's PPPoE server.
10 Service Name Sometimes required by ISPs, this field specifies a particular service offered by the ISP.
11 Gateway Ex: 0.0.0.0 The IP address used as the default route.
12 Override MAC Address Ex: D0:93:95:B0:CF:7A The MAC address for this interface is set to a custom value, replacing the default hardware address.
13 Enable Bridge
  1. CWAN1_0
  1. SW_LAN
  1. VPN
  1. ra0 
Since this is a WAN interface, it is not typically bridged with others. Bridges are more common for LAN interfaces to combine multiple connections.
14 Create Firewall Zone Enable/Disable You can assign this interface to a particular firewall zone, which determines its access rules (e.g., WAN zone for internet traffic, LAN zone for internal traffic).
Advanced Settings: Enable/Disable
15 IPv4 Route Table Enable/Disable This field is used to specify static routes for IPv4.
16 Table No. 254: Default main routing table.

100: Custom routing table for specific purposes.

Default Table (Main Table): Usually, there is a default routing table (often Table No. 254 or 255) where all the routes are stored by default.

Custom Table: You can specify a different table number if you are managing multiple routing policies (e.g., VoIP traffic, VPN traffic).

17 Gateway Metric Ex: 1 A numeric value used to prioritize gateways when multiple are available.

Lower metrics indicate higher priority. For example, if two gateways exist, the one with the smaller metric is used.

18 Broadcast Ex: 192.168.123.34 Broadcast address for the network, typically calculated based on the IP and subnet mask.
19 Override MTU Ex: 1500 MTU size controls the maximum packet size that can be sent over the network.  

Default is usually 1500 bytes.

20 Force Link Enable/Disable Forces the interface to be up even if no physical link is detected.

Type: LAN

Specification details are given below:

SN Field Name Sample Value Description
1 Physical Device Ex: eth0.1 This is the network interface identifier.
2 Type WAN/LAN This designates whether the interface is part of the WAN or LAN.

WAN: Connects the device to the internet.

LAN: Connects the device to the internal network.

3 Protocol Static This means that the IP address, netmask, and other network settings are manually configured rather than being automatically assigned by a DHCP server.
4 IP Address Ex: 192.168.10.1 This is the static IP address assigned to the interface. It acts as the gateway IP address for devices connected to this LAN.
5 Static Netmask Ex: 255.255.255.0 This is the subnet mask for the network.
7 Override MAC Address D0:93:95:B0:CF:7B This allows you to manually enter a different MAC address if needed.
8 Enable DNS Enable/Disable If this option is enabled, the interface will act as a DNS resolver for the devices on the LAN, using the specified DNS server.
9 DNS Server Address Ex: 8.8.8.8 This is the IP address of the DNS server that will be used by devices on the LAN to resolve domain names to IP addresses.

More than one DNS Address can be added.

10 Enable DHCP Server Enable/Disable If enabled, this setting allows the interface to function as a DHCP server, automatically assigning IP addresses to devices connected to the LAN.
11 DHCP Start Address 50 The DHCP server will begin assigning IP addresses starting from 192.168.10.50
12 DHCP Limit 100 This specifies the number of IP addresses the DHCP server can assign. Starting at 192.168.10.50 and with a limit of 100, the server can assign addresses up to 192.168.10.149.
13 Lease Time Duration Hours-(H)

Minutes-(M)

Seconds-(S)

Hours-(H): This indicates that the lease time for each IP address assignment is measured in hours.

Minutes-(M): This indicates that the lease time for each IP address assignment is measured in minutes.

Seconds-(S): This indicates that the lease time for each IP address assignment is measured in seconds.

14 Lease Time 12 The DHCP lease time is set to 12 hours. After this period, a device must renew its IP address lease with the DHCP server to continue using the assigned IP address.
15 Enable Bridge 1.     CWAN1_0

2.     SW_LAN

3.     VPN

4.     ra0

Since this is a WAN interface, it is not typically bridged with others. Bridges are more common for LAN interfaces to combine multiple connections.
16 Enable DHCP Relay Enter Relay Server IP Forwards DHCP requests from devices in this subnet to an external DHCP server instead of using the built-in DHCP server.
17 Create Firewall Zone Enable/Disable You can assign this interface to a particular firewall zone, which determines its access rules (e.g., WAN zone for internet traffic, LAN zone for internal traffic).
18 Internet Over SW_LAN Enable/Disable Allow all outbound traffic from the LAN to the internet.
Advanced Settings: Enable/Disable
19 IPv4 Route Table Enable/Disable This field is used to specify static routes for IPv4.
20 Table No. 254: Default main routing table.

100: Custom routing table for specific purposes.

Default Table (Main Table): Usually, there is a default routing table (often Table No. 254 or 255) where all the routes are stored by default.

Custom Table: You can specify a different table number if you are managing multiple routing policies (e.g., VoIP traffic, VPN traffic).

21 Gateway Metric Ex: 1 A numeric value used to prioritize gateways when multiple are available.

Lower metrics indicate higher priority. For example, if two gateways exist, the one with the smaller metric is used.

22 Broadcast Ex: 192.168.123.34 Broadcast address for the network, typically calculated based on the IP and subnet mask.
23 Override MTU Ex: 1500 MTU size controls the maximum packet size that can be sent over the network.

Default is usually 1500 bytes.

Save and Update once configuration changes have been made.


Relay Server:

A relay server typically functions in a network to forward requests (usually DHCP or DNS) from clients to

a designated server when the server is on a different network segment.

EDIT:

To edit the existing device the user needs to click on the edit option.

Once the changes are done click on the save button to save all the changes.

Click on the deleted button to delete the existing device detail.

Specification details are given below:

SN Field Name Sample Value Description
1 Interface 1.)   eth0.1

2.)   ra0

1) eth0.1 typically represents a VLAN where the relay will listen for client requests.

2) If your device is broadcasting a Wi-Fi network on the ra0 interface, any DHCP or DNS relay settings will apply to devices connected via this wireless interface.

2 Start IP Address Ex: 192.168.10.100 This is the beginning IP address of the range that will be leased out to clients.
3 End IP Address Ex: 192.168.10.150 An IP address that is in the same subnet as the Start IP Address and allows sufficient addresses to be leased.
4 Netmask Ex: 255.255.255.0 A valid subnet mask such as 255.255.255.0 (for a /24 network), or 255.255.0.0 (for a /16 network).
5 Lease Time For a 24-hour lease time, set this value to 86400. This is the amount of time that an IP address is assigned to a client before it needs to request a renewal from the DHCP server.

Save and update.

Cellular Setting:

In this page, the user needs to configure the various details with respect to the SIM.

Select single cellular single sim where the user must configure the APN details of the sim used for the router device. The Configurations can be done based on the SIM usage, with respect to IPV4 or IPV6.

The specifications details are below.

SN Field name Sample value Description
1 Cellular Enable Checkbox Check this box to enable cellular functionality.
2 Cellular Operation Mode 1.) Single Cellular with Dual Sim

2.) Single Cellular with Single SIM

1.) This mode allows you to use one cellular modem with two SIM cards.

2.) This mode allows you to use one cellular modem with single SIM card.

3 Cellular Modem 1 QuectelEC200A This field displays the modem name.
4 Choose SIM 1 APN Mode 1.) Auto

2.) Manual

1.) Choose Auto for regular SIM to detect APN name automatically.

2.) Choose manual to enter the APN settings manually in case of M2M SIM cards.

5 SIM 1 Access Point Name airtelgprs.com Enter the APN provided by your cellular service provider in case of M2M sim. For regular sim cards APN name will be displayed automatically.
6 SIM 1 PDP Type IPV4 Choose the PDP type, which is typically either IPv4 or IPv6 depending on the sim card.
7 SIM 1 Username Enter the username if required by the APN. Leave blank if not required.
8 SIM 1 Password Enter the password if required by the APN. Leave blank if not required.
9 SIM 1 Authentication Protocol None Choose the authentication protocol. Options typically include None, PAP, or CHAP.
10 SIM 1 MTU Ex: 1500 (a common MTU size) MTU (Maximum Transmission Unit) defines the largest size of a data packet that can be transmitted over the network.
11 Choose SIM 2 APN Mode 1.) Auto

2.) Manual

1.) Choose Auto for regular SIM to detect APN name automatically.

2.) Choose manual to enter the APN settings manually in case of M2M SIM cards.

12 SIM 2 Access Point Name airtelgprs.com Enter the APN provided by your cellular service provider in case of M2M sim. For regular sim cards APN name will be displayed automatically.
13 SIM 2 PDP Type IPV4 Choose the PDP type, which is typically either IPv4 or IPv6 depending on the sim card.
14 SIM 2 Username Enter the username if required by the APN. Leave blank if not required.
15 SIM 2 Password Enter the password if required by the APN. Leave blank if not required.
16 SIM 2 Authentication Protocol None Choose the authentication protocol. Options typically include None, PAP, or CHAP.
17 SIM 2 MTU Ex: 1500 (a common MTU size) MTU (Maximum Transmission Unit) defines the largest size of a data packet that can be transmitted over the network.
18 Primary SIM Switchback Enable Enable/Disable When enabled, the device will automatically switch back to the primary SIM (SIM 1) after switching to SIM 2, under certain conditions (e.g., SIM 1 regains network availability).
19 Primary SIM Switchback Time (In Minutes) 10 Enter the time in minutes after which the system should switch back to the primary SIM if it becomes available.

After configuring all the required information, the user should click on the save and then click on the update to update the all the required information.

Band lock and Operator Lock:

In this page, the user needs to configure the lock band and operator based on the service provider.

Bands available in the drop-down list.

2G/3G option:

2G/3G: - 3G allows additional features such as mobile internet access, video calls and mobile TV. While the main function of 2G technology is the transmission of information through voice calls.

The user should select the band check box available for 2g/3g from the given list. Bands available for selection under LTE for the bands available in that area.

Operator Selection Mode:

The user needs to click on the check box of the “operator select enable” to select the operator.

Once the check box is clicked there will be a dropdown list of the operator modes from which the user needs to select the mode. The user needs to select the operator mode from the given dropdown list.

If the user selects the mode “Manual” or “Manual-Automatic” then one more text box will appear where the user must provide the operator code.

After configuring all the required information, the user should click on the save and then click on the update to update the all the required information.


Wi-Fi Setting:

In this, router has the general setting and change country code, channel, radio mode, radio passphrase as per the requirement after clicking on enable Radio button.

The user needs to select the respective radio mode based on its need.

It has 3 radio modes.

‘Access point’, ‘client only’ and ‘Access point and client’

Refer the below picture.

Access Point mode:

In Access Point mode, a configuration in which a router, allows wireless devices to connect to a wired network by creating a Wi-Fi hotspot.

Client only:

In client mode, the access point connects your wired devices to a wireless network. This mode is suitable when you have a wired device with an Ethernet port and no wireless capability, for example, a smart TV, Media Player, or Game console and you want to connect it to the internet wirelessly, select the Client Mode and give the Radio SSID & client passphrase.

Access point and client point:

Select this option for both type of connection, give both SSID and passphrase.

After configuring all the required information, the user should click on the save and then click on the update to update the all the required information.


The specifications details are below.

SN Field name Sample value Description
1 Radio 0 Protocol IEEE 802.11 b/g/n This section shows the radio protocol which is by default.
2 Country Code INDIA Select the country accordingly.

(INDIA by default)

3 Channel Auto In this dropdown the user should select the proper channel to be used. (Auto by default)
4 TX Power 100 In this text box the user should specify the power.
5 Channel Width 20 MHz In this dropdown the user should select the channel width
6 Radio Mode 1.) Access point

2.) Client only

3.) Access point and client

In this drop down the user should select the mode.

(Access point by default)

7 Radio SSID AP_37A26230014 In this text box the user should specify the SSID number which usually comes with the router.
8 Radio Authentication WPA2 Personal (PSK) In this dropdown the user should select the type of authentication.

(WPA2 Personal (PSK) by default)

9 Radio Encryption AES In this dropdown the user should select the type of encryption required.

(AES by default)

10 Radio Passphrase ********* In this text box the user should specify the password. Password will be given with the router which can be changed later.
11 Radio DHCP server IP 192.168.100.1 In this text box the user should specify the IP address of DHCP server.

(192.168.100.1 will be default which can be changed accordingly)

12 Radio DHCP start address 100 In this text box the user should specify the start address of the DHCP.

(100 value is default)

13 Radio DHCP limit 50 In this text box the user should specify the limit for the DHCP.

(50 value is default)

Guest Wifi:

This option enables a separate Wi-Fi network for guests, isolated from the main network to enhance security and privacy. Guest Wi-Fi allows visitors or temporary users to connect to your network without accessing the main LAN resources.


Wireless Schedule:

Wi-Fi can be automatically withdrawn based on the configuration done in this section.

The user can schedule the Wi-Fi’s accessibility time during a particular period.

After configuring all the required information, the user should click on save and then click on update to update all the required information.

The user can select more than one “day of the week” for scheduling the Wi-Fi working hours.

SMS Settings:

User needs to enable SMS option in SMS settings page.

This option is to validate the mobile numbers using which controlling commands could be sent to the router device.

1 to 5 mobile numbers can be authenticated by choosing from “Select Valid SMS user numbers” and adding the mobile numbers below respectively.

API key is the pass key used in the commands while sending SMS.

Displayed in the below screen is the default API key which can be edited and changed as per choice. After addition of the mobile number’s user needs to click on save button for changes to take place.

1.) Select valid user number max. 5 and add authorized phone number in the tab where you want to find the alert and click on ‘SMS Response Enable’, ‘save’ and ‘update’ button.

2.) Now send SMS commands from the configured mobile number.

3.) Once the commands are received from the user phone number the board will send acknowledgement as per the commands.

4.) After that it will send the router’s status once it has rebooted and is operational again.


Mentioned below are a few commands which can be sent from the configured mobile number to the router device. Below two commands are One for rebooting the router device and another to get the uptime.

1) {"device”: ["passkey”, “API key"],"command":"reboot","arguments":"hardware"}

2) {"device”: ["passkey ","API key"],"command”: “uptime"}


After configuring all the required information, the user should click on save and then click on update to update all the required information.


Loop back IP settings:

The loopback IP address, often referred to as “localhost.” it is used to establish network connections within the same device for testing and troubleshooting purpose.

After configuring all the required information, the user should click on the save and then click on the update to update the all the required information.

The loopback IP address, commonly represented as 127.0.0.1, is a special address used for testing network connectivity on a local machine. It allows a device to send network messages to itself without involving external networks, making it useful for troubleshooting and diagnostics.

However, this IP can be changed as per requirement and to do that, Navigating to Setting>>Network configuration>> Loopback IP settings can be changed/updated.

2.2 VLAN

VLAN (Virtual Local Area Network) is a network within a network that segregates traffic into different logical networks on the same physical hardware. VLANs help in managing traffic more effectively and securely.

It is further divided into 2 sections,

Port-Based VLAN

Tagged Port Configuration

Port-Based VLAN:

A VLAN configuration method where network ports are assigned to specific VLANs.

EDIT:

To add a new VLAN ID, click on ‘Add Device’.

To edit the existing device the user needs to click on the edit option.

Once the changes are done click on the save button to save all the changes.

Click on the deleted button to delete the existing device detail.

Specification details are given below:

SN Field Name Sample Value Description
1 VLAN ID 1 This is a unique identifier for a VLAN within a network.
2 Port 0 Untagged When a port is set as untagged for a VLAN, it means that traffic entering or exiting this port is automatically associated with that VLAN without any VLAN tags being added to the frames.
3 Port 1 Untagged
4 Port 2 tagged When a port is set as tagged for a VLAN, it means that traffic on this port will include VLAN tags in the Ethernet frames. These tags carry the VLAN ID, allowing switches and other devices to know which VLAN the traffic belongs to.
5 Port 3 Untagged
6 Port 4 OFF When a port is marked as off for a VLAN, it means that the port is not participating in that VLAN at all. It will neither send nor receive traffic associated with that VLAN.

Save and update the page.

Tagged Port Configuration:

EDIT:

To add a new VLAN ID, click on ‘Add Device’.

To edit the existing device the user needs to click on the edit option.

Once the changes are done click on the save button to save all the changes.

Click on the deleted button to delete the existing device detail.

Specification details are given below:

SN Field Name Sample Value Description
1 Type 802.1Q IEEE 802.1Q is the standard protocol for VLAN tagging in Ethernet networks.
2 Parent Interface Port 2 It is the underlying physical interface like port 2 that carries the VLAN-tagged traffic.

Save and update the page.

2.2 SIM Switch

In this page the user needs to configure the Sim for the given device.


The user needs to select from the drop-down menu on which basis the sim needs to be switched.

Once the user selects on “signal strength” then the parameters related to signal strength will pop up and the user needs to configure the parameters based on the requirement.


Threshold RSRP:

This Needs to be set appropriately. Incorrect setting may cause unnecessary SIM switching. (In General, a BAD RSRP value range is -140 to -115 and FAIR RSRP value range is -115 to -105).

Threshold SINR:

This Needs to be set appropriately. Incorrect setting may cause unnecessary SIM switching. (In General, a BAD SNR value range is -20 to 0 and FAIR SNR value range is 0 to 13)

Once the user selects on “Data Limit” then the parameters related to Data Limit will pop up and the user needs to configure the parameters based on the requirement.

SN Field name Sample value Description
1 SIM Switch Based on Data Limit The user needs to select from the drop-down menu on what basis the sim needs to be switched.
2 SIM 1 Data Usage Limit (In MB) 1000 The user needs to set the limit for the data usage for SIM 1.
3 SIM 2 Data Usage Limit (In MB) 1000 The user needs to set the limit for the data usage for SIM 2.
4 Periodicity Daily The user needs to set the pattern/frequency to switch the sims.
5 Day Of Month 16 The user needs to set the day for switching the sim.

After configuring all the required information, the user should click on the save.

2.3 Multi-WAN

As shown below, this section has 4 categories,

Status

General settings

Failover

Load Balancing

In ‘Status’ tab user can see the active network connections on the device as shown above.

General Settings:

In general settings, select any one option from the drop-down menu which you wish to imply and click on save and update.

Click on save and update.

Failover:

NOTE: Please verify that the name to be added is in the interface section of the status tab.

EDIT:

The specifications details are below.

SN Field name Sample value Description
1 Priority Ex: 5 Setting a priority of 1 means this connection has the highest priority and will be used before any others with a higher priority number.
2 Select Track IP Numbers 2 In this dropdown the user needs to select the track number for the Ips. This specifies the number of IP addresses that will be used for tracking the status of the connection.
3 TrackIP1 8.8.8.8 The system will ping this IPV4 IP address to check if the connection is up and working. You can even add any whitelisted IP.
4 TrackIP2 8.8.4.4 The system will ping this IPV4 IP address to check if the connection is up and working. You can even add any whitelisted IP.
5 Reliability 1 If reliability is set to 1, it might mean the connection is considered reliable if it successfully pings at least one of the tracked IP addresses.
6 Count 1 Setting Count to 1 means the device will send one ping to each IP address to check for connectivity.
7 Up 3 If set to 3, the connection will be considered "up" only if all three pings are successful.
8 Down 3 If set to 3, the connection will be considered "down" if all three pings fail.

Click on save and update tab.

Load Balancing:

Load balancing is a network management technique used to distribute traffic across multiple network connections or servers to optimize resource use, maximize throughput, minimize response time, and ensure reliability.

Task: Distributes network traffic evenly across multiple connections (e.g., multiple WAN links) or servers.

Purpose: This ensures that no single connection or server is overwhelmed with too much traffic, which could lead to congestion and slower performance.

EDIT:



Specification details are given below:

SN Field Name Sample Value Description
1 Traffic Distribution Ratio Ex: 60% If you have two connections and set one to 60% and the other to 40%, traffic will be distributed accordingly.

The ratio must be the same for CWAN1_0 and CWAN1_1.

2 Select Track IP Numbers 2 The system will track two IP addresses to determine if the network connection is active and reliable.
3 TrackIP1 8.8.8.8 The system will ping this IPV4 IP address to check if the connection is up and working. You can even add any whitelisted IP.
4 TrackIP2 8.8.4.4 The system will ping this IPV4 IP address to check if the connection is up and working. You can even add any whitelisted IP.
5 Reliability 1 With a reliability setting of 1, the connection might be considered reliable if at least one ping is successful.
6 Count 1 The system will send one ping to each tracked IP to check the connection's status.
7 Up 3 The system requires 3 successful pings for the connection to be marked as "up."
8 Down 3 If 3 pings fail, the system will mark the connection as "down," and it may switch to an alternate connection if available.

Click on save and update tab.


2.4 VPN

VPN stands for Virtual Private Network, it establishes a connection between the system and a remote server, which is owned by a VPN provider.

Creating a point-to-point tunnel that encrypts the personal data, masks the IP address, and allows to block the required website to blocks via firewalls on the internet.

Navigate to settings >= VPN, general settings and you will see all VPN options you wish to use.

Refer the below figure.

There are 5 types of setting available under VPN configuration.

  • General Settings
  • IPSEC
  • Open VPN
  • Wireguard
  • Zerotier
  • PPTP
  • L2TP

General Settings:

In this page the user must choose which type of VPN connection is required for the device. The user must select from IPSEC, Open VPN, Wireguard or Zerotier based on its requirement. If required, the user can select all the options. The user needs to click on the save after selecting the option based on its use.

IPSEC:

IPSEC VPN is used to create a VPN connection between local and remote networks.

To use IPSEC VPN, the user should check that both local and remote routers support IPSEC VPN feature.

In this page the user can add/edit/delete the IPSEC VPN connection for the device.

The user needs to click on the update button once the required configuration is completed.

In IPSEC the user needs to click on edit button to edit the configuration of an existing VPN connection.

Click on update once done with configurations.

The tunnel will show established, showing the connection has been made.


Detailed specifications are below:

SN Field name Sample value Description
1 IPSEC Site to Site VPN In this dropdown the user should select the IPSEC connection type.
2 IPSEC Role Client/Server In this dropdown box the user needs to select the IPSEC role. The device is acting as a client in the VPN setup (in this example).
3 Connection Type Tunnel In this dropdown the user needs to select the connection type. The user should select on the connection enable check box.
4 Connection mode Route/add/start/trap In this drop down list the user should select the mode for the connection. In this example start is selected which means the VPN connection is initiated automatically.
5 Remote Server IP ******** The IP address of the remote VPN server.
6 Local ID 3.3.3.3 The user needs to set the local id. It is the identification for the local VPN client.
7 No. of local subnets 1 In this dropdown the user needs to select how many subnets will be connected.
8 Local Subnet 1 172.16.31.25/32 In this text box the user needs to put the specific local subnet included in the VPN.
9 Remote id 1.1.1.1 In this text box the user needs to put the id of the remote connection. It is the identification for the remote VPN server.
10 No of remote subnet 1 In this dropdown the user needs to select how many subnets it will be connected remotely.
11 Remote subnet 10.1.1.0/24 In this text box the user needs to put the address of the remote subnet. The specific remote subnet included in the VPN.
12 Key exchange Ikev1 In this dropdown the user should select the which key exchange version to be selected.
13 Aggressive Yes/No In this dropdown the user should select either yes or no.
14 IKE Lifetime (In Seconds) 86400 The lifetime of the IKE phase in seconds (1 day).
15 Lifetime (in seconds) 28800 The lifetime of the IPsec SA (Security Association) in seconds (8 hours).
16 Enable DPD Detection 1

0

Indicates whether Dead Peer Detection is enabled to detect a lost connection. Enable this option as per server-side settings.
17 Time Interval (In Seconds) 60 This option is available only if DPD Detection is enabled. The time interval is the interval for DPD checks.
18 Action Restart/clear/hold/

trap/start

Restart: Action to take when DPD detects a lost connection (restart the connection). Select as per server-side setting.
19 Authentication Method PSK PSK: Pre-shared key is used for authentication. Select this option for authentication as per sever side setting.
20 Multiple Secrets 1/0 Indicates whether multiple PSK secrets are used. Enable only if required.
21 PSK Value ****** Pre-shared key value (masked for security).
Proposal settings Phase I
22 Encryption Algorithm AES 128

AES 192

AES 256

3DES

AES 256: Encryption algorithm for Phase I. Select as per server-side configuration. Both server and client should have same configuration.
23 Authentication Phase I SHA1

MD5

SHA 256

SHA 384

SHA 512

SHA 512: Authentication algorithm for Phase I.

Select as per server-side configuration. Both server and client should have same configuration.

24 DH Group MODP768(group1)

MODP1024(group2)

MODP1536(group5)

MODP2048(group14)

MODP3072(group15)

MODP4096(group16)

MODP2048 (group14): Diffie-Hellman group for key exchange.

Select as per server-side configuration. Both server and client should have same configuration.

Proposal settings Phase II
25 Hash Algorithm AES 128

AES 192

AES 256

3DES

AES 256: Encryption algorithm for Phase II. Select as per server-side configuration. Both server and client should have same configuration.
26 Authentication Phase II SHA1

MD5

SHA 256

SHA 384

SHA 512

SHA 512: Authentication algorithm for Phase II.

Select as per server-side configuration. Both server and client should have same configuration.

27 PFS Group MODP768(group1)

MODP1024(group2)

MODP1536(group5)

MODP2048(group14)

MODP3072(group15)

MODP4096(group16)

MODP2048 (group14): Perfect Forward Secrecy group.

Select as per server-side configuration. Both server and client should have same configuration.

Open VPN:

To use the VPN feature, the user should enable OpenVPN Server on the router and install and run VPN client software on the remote device.

The user needs to “upload” the respective certificate from a valid path and then click on the “Update.”

Only the TAP connection needs a bridge. The tun connection does not require a bridge. Here we have established a TUN connection.

By clicking on the enable/disable button, the user can start/stop the VPN connection.

VPN TUN has been established.

Same way VPN TAP can also be established with the help of bridging.

WireGuard:

WireGuard is simple, fast, lean, and modern VPN that utilizes secure and trusted cryptography.

Click on “Edit” to start configurations as needed.

EDIT:

SN Field name Sample value Description
1 Wireguard Role Client/Server In this dropdown box the user needs to select the wireguard role.
2 WireGuard Tunnel Over IPV4/IPV6 IPV4: Use this if your network and endpoint (WireGuard server) support only IPv4.

IPV6: Use this if your network and endpoint support IPv6.

3 Enable Failover Enable/Disable This option allows the VPN connection to automatically switch to a backup connection if the primary connection fails.
4 Enable IPV4 Enable/Disable This enables IPv4 traffic to be routed through the WireGuard tunnel.
5 Enable IPV6 Enable/Disable Enable this if your network and the destination support IPv6.
6 Listen Port 51820 This is the default port that WireGuard uses to listen for incoming connections.
7 Endpoint Host port 51820 This is the port on the WireGuard server that the client will connect to.
8 Peer Publickey ***** This is the public key of the WireGuard server that the client uses to establish a secure connection.
9 Enable Default Route Enable/Disable Enable this if you want all network traffic (not just specific routes) to be routed through the WireGuard VPN.

Save and update the page after configuration has been done.


Zerotier:

ZeroTier is a tool that lets you create your own private network over the internet.

Go to ZeroTier Central and sign up for a free account.

In ZeroTier Central, click on "Create a Network". This will generate a unique 16-digit network ID for your new network.

Go to settings => VPN, in general settings, enable ZeroTier and save.

Copy and paste the unique 16-digit network ID in the edit section.

Click on the save button after the required configuration.

SN Field name Sample value Description
1 NetworkID Ad2769hfkw2345f4 In this dropdown box the user needs to paste the unique 16-digit network id.
2 Listen Port 9993 Default

PPTP:

This configuration is for setting up a PPTP (Point-to-Point Tunnelling Protocol) VPN connection.

PPTP is a protocol that enables secure data transmission across public networks like the internet, often used to connect to remote networks or access resources securely.


*Refer the image below*

EDIT:

Specification details are given below:

SN Field Name Sample Value Description
1 PPTP Role Client/Server Client: meaning it will initiate the connection to the remote PPTP server.

Server: means this device will accept incoming PPTP connections from clients, which can be users or devices that need remote access to the local network or internet via this server.

PPTP Role: CLIENT
2 Default Route Enable/Disable Enabling the default route means that all network traffic will be routed through the VPN tunnel once the connection is established.
3 Metric Ex: 0 The metric is a value that defines the priority of this route among other available routes. Lower metrics indicate higher priority.
4 Server IP Ex: 192.168.10.1 This is the IP address of the PPTP server the client will connect to.
5 Interface Any

EWAN5

Selecting the correct interface is essential because it tells the system which network adapter should be used to establish the VPN connection.
6 Username ****** This field is the login username for the PPTP server.
7 Password **** This is the password associated with the username.
PPTP Role: SERVER
8 Local IP Ex: 192.168.0.1 This IP address (192.168.0.1) is the local IP of the PPTP server on its network. Clients connecting to the VPN will see this address as their gateway or endpoint within the VPN.
9 Remote IP Range Ex: 192.168.0.20-30 This range defines the pool of IP addresses that the server will assign to connected VPN clients. Here, any client connecting to the server will receive an IP address between 192.168.0.20 and 192.168.0.30, which provides up to 11 possible addresses for simultaneous connections.
10 Username Ex: User1 This is a username that the client will use to authenticate with the PPTP server. In this case, User1 is designated as an authorized user.
11 Password ***** The password associated with User1 is required to complete the authentication.

Once Configured, click on save and update.


L2TP:

L2TP (Layer 2 Tunneling Protocol) is a network protocol used to establish secure tunnels for transferring data between remote devices or networks, often in VPNs, by encapsulating data for encryption and routing.


*Refer the image below*

EDIT:

Specification details are given below:

SN Field Name Sample Value Description
1 L2TP Role Client/Server Client: connecting to an L2TP server to establish a secure tunnel for communication.

Server: the server listens for incoming client connections.

L2TP Role: CLIENT
2 Default Route Enable/Disable If enabled, all outbound traffic will be routed through the L2TP connection.

If disabled, only specific traffic destined for the L2TP network will use the tunnel.

3 Metric Ex: 1 The system uses this metric to decide which route to prioritize if multiple routes exist.

L2TP connection with Metric 1 will take precedence over a LAN or WAN route with Metric 10.

4 Server IP Ex: 192.168.10.1 This is the IP address of the L2TP server to which the client will connect.

Local Networks: If connecting within a LAN, the server might have an IP like 192.168.x.x.

Remote Connections: The server IP might be a public address like 203.0.113. x.

5 Checkup Interval Time (in sec) Ex: 30/60 secs Setting 30 seconds ensures the client checks the connection every half-minute. If the tunnel drops, the client can quickly reconnect.
6 Interface Any Example interfaces might include eth0, usb0, or ra0.
7 Username Ex: User The server verifies the username to grant or deny access.

Must match credentials configured on the L2TP server.

8 Password ****** Should be kept secure and match the configuration on the server.

Masked for privacy during configuration.

9 MPPE Encryption Enable/Disable Enabled: Encrypts traffic using MPPE, enhancing security (recommended).

Disabled: Transmits data unencrypted, reducing overhead but exposing traffic to potential risks.

L2TP Role: SERVER
10 Local IP Ex: 192.168.0.1 This is the local IP address of the L2TP server. It serves as the gateway for clients connected via the L2TP tunnel.
11 Start Ex: 192.168.0.20 Specifies the first IP address that can be assigned to connected clients.
12 Limit Ex: 192.168.0.30 Creates an IP pool for clients (from 192.168.0.20 to 192.168.0.30 in this case).
13 Username Ex: User1 Ensures that only authorized users can connect.

The server verifies this username against its authentication database.

14 Password ****** The server verifies the password along with the username.

The password must match the one configured on the server for successful authentication.


2.5 Firewall

A firewall is a layer of security between the network and the Internet. Since a router is the main connection from a network to the Internet, the firewall function is merged into this device. Every network should have a firewall to protect its privacy.

There are 6 types of setting available under firewall.

  • General Settings
  • Port forwards
  • Traffic Rules
  • SNAT traffic Rules
  • Parental Control
  • Zone Forwarding

General Settings:

General settings are subdivided into 2 parts,

1.) General settings

In general settings, the settings that are made are default settings and can be changed according to user’s preference.

Specification details are below:

SN Field Name Sample Value Description
1 Enable SYN-flood protection Enabled This is enabled by default; setting can be changed if required.
2 Disable IPV6 Disabled This is enabled by default; setting can be changed if required.
3 Drop invalid packets Disabled This is enabled by default; setting can be changed if required.
4 TCP SYN Cookies Disabled This is enabled by default; setting can be changed if required.
5 Input Reject/Accept By default, the setting is ‘Reject’ but this needs to be changed to ‘Accept’ compulsory.
6 Output Reject/Accept By default, the setting is ‘Reject’ but this needs to be changed to ‘Accept’ compulsory.
7 Forward Reject/Accept By default, the setting is ‘Reject’ but this needs to be changed to ‘Accept’ compulsory.


2.) Zone settings

In zone settings, there’s an option to add “New Zone”, according to user’s requirement.

Port Forwards:

Port forwarding is a feature in a router or gateway that allows external devices to access services on a private network.

It maps an external port on the router to an internal IP address and port on the local network, enabling applications such as gaming servers, web servers, or remote desktop connections to be accessed from outside the network.

This helps in directing incoming traffic to the correct device within a local network based on the port number, enhancing connectivity and accessibility.

EDIT:

Click on the save button after the required configuration.

SN Field name Sample value Description
1 Name Example: Web_Server_Forward Field must not be empty. Provide a name for the rule to easily identify it.
2 Protocol Example: TCP+UDP Select the protocol for the rule.

Options typically include TCP+UDP, TCP, UDP, ICMP, Custom.

3 Source zone Example: SW_LAN Select the source zone where the traffic is originating from. Options typically include EWAN2,SW_LAN,CWAN1,CWAN1_0,CWAN1_1,VPN
4 Source MAC address [optional] Example: any any: Leave as any if you don't want to specify a MAC address.
5 Source IP address[optional] Example: Leave blank if not needed. Optionally specify an IP address or range.
6 Source port Example: 80, 443 (if matching traffic for web server ports) Specify the source port or port range.
7 Destination zone Example: SW_LAN Select the destination zone where the traffic is heading to.
8 Destination IP address Leave blank if not needed. Optionally specify the destination IP address or range.
9 Destination port Example: 80 (if redirecting to a web server port) Specify the destination port or port range.

Traffic Rule:

"Traffic rules" refer to the policies and regulations that govern the flow of data packets within a network.

To allow new traffic, click on “Add and Edit” in “New Traffic Rule”.

EDIT:

Specification details are below:

SN Field name Sample value Description
1 Name Example: Allow_HTTP_and_HTTPS Field must not be empty: Provide a descriptive name for the traffic rule.
2 Restrict to Address Family 1.      Options: IPv4, IPv6

2.      Example: IPv4 if dealing with typical internet traffic.

Select the address family to generate iptables rules for.
3 Protocol Example: TCP+UDP TCP+UDP: Match incoming traffic using the given protocol.
4 Match ICMP Type Example: any Match all ICMP types if set to any. Specific types can be chosen if needed.
5 Source Zone Example: LAN Specifies the traffic source zone.
6 Enable DDoS Prevention Example: ‘Checked’ if you want to enable DDoS prevention measures Enable or disable Distributed Denial of Service (DDoS) prevention.
7 Source MAC Address Example: any any: Match traffic from any MAC address or specify a particular MAC address.
8 Source Address Example: 192.168.1.0/24 Match incoming traffic from the specified source IP address or range.
9 Source Port Example: any if all source ports should be matched any: Match incoming traffic from the specified source port or port range.
10 Destination Zone Example: WAN Specifies the traffic destination zone.
11 Action Example: ACCEPT Options: ACCEPT, DROP, REJECT. Specify the action to take for matched traffic.
12 Limit Example: 10/minute to limit matches to 10 times per minute. Maximum average matching rate; specified as a number, with an optional /second, /minute, /hour, or /day suffix.
13 Extra arguments Example: --log-prefix "Blocked: " to add a log prefix to log messages for this rule. Passes additional arguments to iptables. Use with care as it can significantly alter rule behaviour.

Click on save once configured.

SNAT Traffic Rule:

For configuring SNAT (Source Network Address Translation) traffic rules, you can control how outbound traffic from your local network is translated to a different IP address as it exits the network.

To add new source NAT,

Click on “ADD” in “New Source NAT:”

EDIT:

Specification details are below:

SN Field name Sample value Description
1 Name Example: SNAT_WAN_to_LAN Field must not be empty: Provide a unique and descriptive name for the SNAT rule.
2 Protocol Example: TCP+UDP TCP+UDP: Select the protocols that the SNAT rule will apply to.
3 Source Zone Example: wan wan: Specifies the source zone from which the traffic originates.
4 Source IP Address Example: any or a specific range like 192.168.1.0/24 -- please choose --: Specify the source IP address or range. Leave empty if the rule applies to any source IP.
5 Source Port Example: any any: Specify the source port or port range from which the traffic originates.
6 Destination Zone Example: lan lan: Specifies the destination zone to which the traffic is directed.
7 Destination IP Address Example: any or a specific IP like 192.168.1.100 -- please choose --: Specify the destination IP address or range. Leave empty if the rule applies to any destination IP.
8 Destination port Example: any any: Specify the destination port or port range to which the traffic is directed.
9 SNAT IP Address Example: 203.0.113.5 (an external IP address) -- please choose --: Specify the IP address to which the source IP should be translated.
10 SNAT Port Example: Leave empty if not needed, or specify a port like ‘12345’ Optionally, rewrite matched traffic to a specific source port. Leave empty to only rewrite the IP address.
11 Extra Arguments Example: --log-prefix "SNAT_traffic: " (to add a log prefix to log messages for this rule) Pass additional arguments to iptables. Use with care as it can significantly alter rule behaviour.

Click on save once configured.

Parental Control:

For configuring parental control rules, you want to set restrictions based on time, source, and destination zones, as well as specific devices.

To add parental control in firewall,

Click on “Add and Edit” in “New parental control:” field.

EDIT:

Specification details are given below:

SN Field Name Sample Value Description
1 Name Example: Parental_Control_Sunday Field must not be empty: Provide a unique and descriptive name for the parental control rule.
2 Proto all all: This specifies that the rule will apply to all protocols.
3 Source Zone Example: lan Field must not be empty: Please look at Firewall->Zone Settings to find zone names.
4 Destination Zone Example: wan Field must not be empty: Please look at Firewall->Zone Settings to find zone names.
5 Source MAC Address Example: 00:1A:2B:3C:4D:5E Field: Enter the MAC address of the device you want to apply the parental control rule to. This is useful for restricting specific devices.
6 Target Example: Reject Accept: This specifies the action to take. For parental controls, you might want to use ‘Reject’ or ‘Drop’ to block traffic.
7 Weekdays Example: Sunday Sunday: Specify the days of the week when the rule should be active.
8 Month Days Example: All All: Specify the days of the month when the rule should be active.
9 Start Time (hh:mm:ss) Example: 18:00:00 (6:00 PM) Field must not be empty: Specify the start time when the rule should begin to apply.
10 Stop Time (hh:mm:ss) Example: 22:00:00 (10:00 PM) Field must not be empty: Specify the stop time when the rule should end.

Click on save once configured.


Zone Forwarding:

Zone forwarding in network configuration allows traffic to be directed from one zone to another.

To ADD new zone,

Click on “Add” in “New Zone Forward:” field.

*Refer the image below*

EDIT:

Specification details are below:

SN Field Name Sample Value Description
1 Source Zone Example options: lan, wan, etc. --please choose--: Select the source zone from which the traffic originates.
2 Destination Zone Example options: lan, wan, etc. --please choose--: Select the destination zone to which the traffic is directed.

Click on save once configured.


2.7 Loopback Rule

In this page the user can configure the port where he wants to forward the traffic to. Here the user can add/edit/delete different port ports as per the requirement.

The user should click on ‘add’ and then ‘edit’ to do the required changes in the port and enter the valid information in each section to configure the port for forwarding.

EDIT:

Specification details are given below:

SN Field Name Sample Value Description
1 Name Example: loopback Provide a descriptive name for the rule.
2 Protocol Example: TCP+UDP TCP+UDP: Select the protocols that the rule will apply to.
3 Source IP Address [Optional] Example: any or a specific IP range like 192.168.1.0/24 Optionally specify the source IP address or range. Leave empty if the rule should apply to any source IP.
4 Source Port [Optional] Example: any any: Specify the source port or port range from which the traffic originates. any allows traffic from all ports.
5 Loopback IP Address Example: 1.1.1.1 Specify the loopback IP address.
6 Port Example: 81 any: Specify the destination port or port range to which the traffic is directed. any allows traffic to all ports.
7 Action Example: DNAT This specifies the action to take either DNAT or SNAT.
8 Internal IP Address Example: 2.2.2.2 Field must not be empty: Specify the internal IP address to which the traffic should be redirected.
9 Internal Port Example: 81 Redirect matched incoming traffic to the given port on the internal host.

Once the user is done with the required configurations, user should click save button and then click on the update to save the changes.

2.8 VRRP

VRRP (Virtual Router Redundancy Protocol) is used to ensure high availability for IP routing by allowing multiple routers to work together to present the illusion of a single virtual router to the hosts on a network.

In General Settings, click on ‘Enable VRRP’ and save.

In VRRP section,

Give a name and ‘Add’ device.

Click on ‘Edit’ to make changes.

Click on ‘Delete’ if particular instance not required.

EDIT:

Specification details are given below:

SN Field Name Sample Value Description
1 Role 1.      Master

2.      Backup

Choose Master for the primary router that should handle the traffic under normal circumstances.

Choose Backup for a secondary router that will take over if the master fails.

2 Virtual ID Ex: 0 The value can range from 0 to 255.

Ensure all routers in the same VRRP group share the same Virtual ID.

3 Priority Ex: 100 For the Master role, use the highest priority, typically above 100.

For the Backup role, set a lower priority number, usually below the master's priority.

4 Interface SW_LAN This is the network interface on which VRRP operates.
5 Source IP Ex: 192.168.10.1 This is the IP address used as the source in VRRP advertisements.
6 Peer IP Ex: 192.168.10.10 This is the IP address of the other VRRP peer (usually the backup router). It helps the routers identify each other.
7 Virtual IP Address 192.168.10.100/24 The virtual IP should be an unused address within the subnet, such as 192.168.10.100/24, ensuring it's consistent across all VRRP routers.
8 Enable Authentication Enable/Disable Enable this if you want to secure your VRRP communications.
9 Password ********* It ensures that only routers with the correct password can join the VRRP group.

Save and update once changes have been made.

2.9 Remote Monitoring

In this page the user can select which equipment needs to be monitored remotely.

Once the user selects the type of RMS click on save.

NMS:

IN this page the user should type the server IP or domain name in the URL then click on save.

Click on upload and start (Once key is uploaded and this option is clicked, NMS automatically starts, and this router device gets registered with the NMS server provided).

TR_069:

To enable the TR_069 the user needs to click on the enable check box.

Once the user clicks on the check box of enable it will display all the required filed to configured.


Specification details are given below:

SN Field Name Sample Value Description
1 Serving Interval 300 A value of 300 seconds means the device will check in with the ACS (auto-configuration servers) every 5 minutes.
2 Interface This can be something like eth0 or wan. This specifies the network interface used for TR-069 communication.
3 Username Example: User The username used to authenticate with the ACS.
4 Password •••• The password used to authenticate with the ACS.
5 URL http://example.com The URL of the ACS. This is where the CPE (customer-premises equipment) will send its requests and where it will receive configurations and updates from.

The user should fill all the required fields and click on the save button.

2.10 Tunnel

Tunnels are a method of transporting data across a network using protocols which are not supported by that network.

It is further categorised into 3 sections,

1.) General Settings

2.) GRE Tunnel

3.) IPIP Tunnel


General Settings:

In this page the user needs to select under which type of tunnel it needs to send the data.


Once the user selects the type of tunnel then click on the save button.

GRE Tunnel:

A GRE (Generic Routing Encapsulation) tunnel configuration involves setting up a virtual point-to-point connection between two endpoints over an IP network.

Here the user can add/edit/delete the details of the tunnel.


Once the required update is done then click on update to save the changes.


EDIT:


Specification details are given below:

SN Field Name Sample Value Description
1 Tunnel name Example: GRETunnel GRETunnel: The name of the GRE tunnel.
2 Local external IP Example: 10.1.1.66 The IP address of the local endpoint that will initiate the GRE tunnel.
3 Remote external IP Example: 10.1.1.40 The IP address of the remote endpoint that will terminate the GRE tunnel.
4 Peer tunnel IP Example: 10.1.1.4 The IP address of the peer's tunnel interface.
5 Local tunnel IP Example: 10.1.1.6 The IP address of the local tunnel interface.
6 Local tunnel net mask Example: 255.255.255.0 The subnet mask of the local tunnel interface.
7 Remote IP Example: 192.168.10.0/24 The remote network that is reachable through the GRE tunnel.
8 Enable Tunnel Link Check to enable Enable or disable the GRE tunnel link.
9 Interface type Example: EWAN2 EWAN2: The type of network interface used for the GRE tunnel.
10 MTU Example: 1476 1476: Maximum Transmission Unit size for the GRE tunnel.
11 TTL Example: 64 64: Time To Live value for the packets within the GRE tunnel.
12 Tunnel key Example: 12345678 12345678: A unique key used to identify the GRE tunnel.
13 Enable keep alive Check to enable Enable or disable the keep-alive feature to monitor the tunnel's status.
14 Keep alive interval Example: 10 10: Interval in seconds for the keep-alive packets.

Once the required update is done then click on update to save the changes.

IPIP Tunnel:

An IPIP (IP-in-IP) tunnel is a simple tunnelling protocol used to encapsulate IP packets within IP packets. This is like GRE but without additional features such as keying and type fields.

Here the user can add/edit/delete the details of the tunnel.

EDIT:

Once the required update is done then click on update to save the changes.


Specification details are given below:

SN Field Name Sample Value Description
1 Tunnel name Example: IPIPTunnel IPIPTunnel: The name of the IPIP tunnel.
2 Local external IP Example: 10.1.1.66 The IP address of the local endpoint that will initiate the IPIP tunnel.
3 Remote external IP Example: 10.1.1.40 The IP address of the remote endpoint that will terminate the IPIP tunnel.
4 Peer tunnel IP Example: 10.1.1.4 The IP address of the peer's tunnel interface.
5 Local tunnel IP Example: 10.1.1.6 The IP address of the local tunnel interface.
6 Local tunnel net mask Example: 255.255.255.0 The subnet mask of the local tunnel interface.
7 Remote IP Example: 192.168.10.0/24 The remote network that is reachable through the IPIP tunnel.
8 Enable Tunnel Link Check to enable Enable or disable the IPIP tunnel link.
9 Interface type Example: EWAN2 EWAN2: The type of network interface used for the IPIP tunnel.
10 MTU Example: 1476 1476: Maximum Transmission Unit size for the IPIP tunnel.
11 TTL Example: 64 64: Time To Live value for the packets within the IPIP tunnel.
12 Tunnel key Example: 12345678 Although typically not used in IPIP, this field might be included for compatibility with certain configurations.
13 Enable keep alive Check to enable Enable or disable the keep-alive feature to monitor the tunnel's status.
14 Keep alive interval Example: 10 10: Interval in seconds for the keep-alive packets.

3.Maintenance

In this module the user can configure/upgrade/modify the settings related to system, password, firmware and monitoring.

It includes below submodules.

  • General
  • Password
  • Reboot
  • Import and Export config
  • Firmware upgrade
  • Monitor Application

*Below is the detailed explanation of every field*

3.1 General/ System

Here you can configure the basic aspects of router like its hostname or the time zone.

It is further sub-divided into,

1.) General Settings

2.) Logging

3.) Language and Style


General Settings:

EDIT:

SN Field Name Sample Value Description
1 Local Time 2024/07/30 13:25:47 The current local date and time set on the device.
2 Hostname 22B25240007 The hostname of the device, which is used to identify it on the network.
3 Time zone Asia/Kolkata The time zone setting of the device, which determines the local time.

Once the user configures the required details then click on the save button to save all the details.

Logging:

Here the user can configure the basic aspects of your device related to system.

The system log configuration provided specifies how the device handles and stores log information, including buffer size, external log server details, and log detail levels.

EDIT:

SN Field Name Sample Value Description
1 System log buffer size Example: 32 kiB The size of the memory buffer allocated (0-32) for storing system logs before they are either written to a file or sent to an external server.
2 External system log server Example: 0.0.0.0 The IP address of an external server where logs can be sent.
3 External system log server port Example: 514 The port used to send logs to the external log server. Port 514 is the default port for syslog.
4 Log output level Example: Debug Sets the detail level of the system logs.
5 Cron Log level Example: Debug The detail level of the logs for cron jobs.

Once the user configures the required details then click on the save button to save all the details.


Language and Style:

Here the user can configure the basic aspects of your device related to language.

Once the user configures the required details then click on the save button to save all the details.

3.2 Password

In this module the user can set the password for the admin credentials.

Specifies the password for the guest account. If the user enters a plaintext password here, it will get replaced with a crypted password on save. The new password will be effective once the user logs out and log in again.

3.3 Reboot

In this module the user can reboot the device remotely.

First option is to directly reboot the device without enabling the maintenance reboot tab.

Click on “Reboot Now” at the bottom of the screen to start the reboot process.


To start maintenance reboot process first the user needs to fill all the required fields.

Need to select the type of reboot for the device whether it needs to be Hardware or Software reboot.


Specification details are given below:

SN Field Name Sample Value Description
1 Enable Maintenance Reboot Enable/Disable Indicates whether the maintenance reboot feature is enabled or not.
2 Type Maintenance Reboot Specifies the type of reboot being scheduled.
3 Reboot Type Software/Hardware Hardware: A hardware reboot involves restarting the entire device as if it were powered off and on again.

Software: A software reboot involves restarting the operating system without powering off the hardware.

4 Minutes Example: 59 The minute at which the reboot should occur (0-59).
5 Hours Example: 22 (10 PM) The hour at which the reboot should occur (0-23, in 24-hour format).
6 Day Of Month Example: All Specifies which days of the month the reboot should occur (1-31). "All" means it will occur every day.
7 Month Example: All Specifies which months the reboot should occur (1-12). "All" means it will occur every month.
8 Day Of Week Example: All Specifies which days of the week the reboot should occur (0-6, where 0 is Sunday). "All" means it will occur every day of the week.

Once the user fills all the required given parameters click on the save.

3.4 Import and Export

In this section, User can Import & Export Configuration files of the Device.

Click “Export Config” to export device configuration & settings to a text file,

Click “Import Config” to import device configuration & settings from a previously exported text file.

The user needs to select on the “choose file”, upload the required file and click on apply.

3.5 Firmware Upgrade

The user can upgrade with the latest software for the existing firmware.

Click on the flash image and chose the path where the sys-upgrade file is kept and then click on flash image, it will upgrade to the latest software once the reboot is done.

This option will completely reset the device to default settings.

Click on the Retain Config and flash and chose the path where the sys-upgrade file is kept and then click on Retain Config and flash, it will upgrade to the latest software once the reboot is done.

This refers to updating the firmware (flashing) of a device while preserving the current configuration settings.

Click on the Factory Reset for the complete reset of the device.

3.6 Monitor Application

In this section, the monitor application is divided into major 2 configurations which is further sub-divided into 4 editable options,

1.) Modem Monitor Application Configuration:

2.) Router Monitor Application Configuration:

Modem Monitor Application Configuration:

Specification details are given below:

SN Field Name Sample Value Description
1 Enable Ping Check Application Enable/Disable Turns on the functionality to perform ping checks on specified IP addresses.
2 Time Interval for Check (In minutes) Example: 10 minutes Frequency at which the ping checks are performed.
3 Select No of IP addresses to ping Example: 1 Number of IP addresses that will be pinged.
4 IP Address 1 Example: 8.8.8.8 The IP address to ping.
5 No. of Retries Example: 5 Number of times to retry pinging an IP address if the initial ping fails.
6 Failure Criteria in (%) Example: 80% (If 4 out of 5 pings fail, it’s considered a failure) Percentage of failed pings required to consider the ping check a failure.
7 Action On Failure Example: Restart Modem Action to be taken if the ping check fails according to the criteria.
8 Enable Second Level Action Enable/Disable Option to enable a secondary action if the primary action fails multiple times.
9 Second Level Action Threshold Example: 2 Number of failures required to trigger the secondary action.
10 Second Level Action Example: Restart Board (Reboots the entire hardware board) The action to be taken if the second level action threshold is met.

Save the details once made necessary changes.

Router Monitor Application Configuration:

Specification details are given below:

SN Field Name Sample Value Description
1 Enable Ping Check Application Enable/Disable Activates the ping check functionality to monitor router performance.
2 Time Interval for Check (In minutes) Example: 10 minutes How frequently the ping checks are performed.
3 Select No of IP Addresses to Ping Example: 1 (Please select the appropriate number based on your requirements) Choose the number of IP addresses to ping. This typically involves selecting from a list or entering multiple addresses.
4 No. of Retries Example: 3 Number of retries if a ping fails.
5 Failure Criteria in (%) Example: 80% (If 80% of the pings fail, it’s deemed a failure) Percentage of failed pings required to consider the ping check as failed.
6 Action On Failure Example: Restart IPsec The action taken if the ping check fails according to the criteria.
7 Enable Second Level Action Enable/Disable Option to enable an additional action if the primary action fails.
8 Second Level Action Threshold Example: Specify the number of failures, such as 2 Number of times the primary action must fail before the secondary action is triggered.
9 Second Level Action Example: Restart Board The action to be taken if the second level action threshold is met.

Save the details once made necessary changes.

4.Status

In this module the user can view the status of the router device with respect to the network, Wan, modem etc.

It has 4 submodules.

  • Interfaces
  • Internet
  • Modem
  • Routes

4.1 Interfaces

Each network device (interface) is associated with specific traffic statistics, uptime, and status. Active interfaces are operational, while inactive interfaces are not currently transmitting data.

Looking on the network status the user can check if the cellular, Wi-Fi, Ewan, VPN etc is up.

4.2 Internet

In this submodule the user can view the status of the internet connections.

To see the latest status of the internet connection the user needs to click on the refresh button.

4.3 Modem

This modem status page provides comprehensive information about the cellular connection's network operator, technology, mode, and various signal quality metrics.

4.4 Routes

This configuration shows how the router directs traffic between different networks and interfaces, ensuring proper communication within the local network and to external networks via the default gateway.

ARP Table: Maps IP addresses to MAC addresses for devices on the network, helping in identifying which device is on which interface.

IPv4 Routes: This shows which network is directly connected on which interface.

Example: Network 192.168.10.0/24 is directly connected on interface eth0.1.

IPv6 Routes: Similar routes as IPv4, but this time listed under IPv6 routing rules.

Example: Local networks 192.168.10.0/24 and 192.168.100.0/24 are managed through eth0.1 and ra0, respectively.

*Refer the below image*

5. Features

In this module the user can see all the features that the router has.

This module includes 9 features.

  • Mac Address Binding
  • URL Filtering
  • Web Server
  • Wi-Fi MacID Filtering
  • Routing
  • DMZ
  • Others
  • Connection Diagnostics
  • Package Manager

5.1 Mac Address Binding

MAC address binding is a configuration that binds a specific MAC address to a specific IP address.

This ensures that a particular device on the network always receives the same IP address from the DHCP

server, which can be useful for network management, security, and ensuring consistent network

behaviour.

Under this submodule the user can configure/update/edit the IP Address for MAC.

You can edit the pre-existing configuration, or you can ‘Add’ in the ‘New MAC ADDRESS’ field.

EDIT:

Specification details are given below:

SN Field Name Sample Value Description
1 Device Name mac1 A user-defined name for the binding configuration.
2 MAC Address 48:9e:bd:da:45:91 The unique identifier for the network interface of the device to which the IP address will be bound.
3 IP Address 192.168.10.55 The IP address that will be consistently assigned to the device with the specified MAC address.

By applying this configuration, the DHCP server will always assign the IP address 192.168.10.55 to the device with the MAC address 48:9e:bd:da:45:91, ensuring consistency and stability in network addressing for that device.

  • Once the user modifies the MAC address /IP Address then click on the save button to save the changes done.
  • The user can click on the deleted button to delete an existing configured device.

Post all the changes the user needs to click on the update to reflect all the changes in the application.

5.2 URL Filtering

In this submodule the user should provide the URL which needs to be blocked for the device.

By implementing URL filtering with the specified URL, you can control and restrict access to certain

websites, thereby improving network security and managing user access.

To add the new URL for blocking, click on the Add New button.

Once the user clicks on the Add New button a new pop will appear in that page write the URL and click

on the save.

The user can select the status of that URL while defining the URL.

To edit / delete the existing URL the user needs to click on the edit /deleted button respectively.

Click on “save” after the changes are done as per the need.

5.3 Web Server

This configuration will allow your device to serve web traffic securely over HTTPS, keep its system time synchronized, and ensure that all HTTP traffic is redirected to HTTPS for better security.

EDIT:

Specification details are given below:

SN Field Name Sample Value Description
1 Enable HTTP HTTP Port: 80

Enable or disable the HTTP server.

Port 80 is the default port for HTTP traffic. It is used to serve web pages over an unencrypted connection.
2 Enable HTTPS HTTPS Port: 443

Enable or disable the HTTPS server.

Port 443 is the default port for HTTPS traffic. It is used to serve web pages over an encrypted connection.
3 Redirect HTTPS Option to redirect HTTP traffic to HTTPS. When enabled, all HTTP requests will be automatically redirected to the HTTPS port to ensure secure communication.
4 Session Timeout (in millisecs) Ex: 60000 In this scenario the webpage will logout after 60secs of inactivity.
5 RFC1918 Filter Enable/Disable When enabled, this filter can block traffic from private IP ranges (e.g., 192.168.x.x, 10.x.x.x) from being routed through the public internet, enhancing network security.
6 Enable NTP Sync Enable or disable NTP synchronization. Synchronizes the device’s system clock with an external NTP server to maintain accurate time.
7 NTP Server 0.openwrt.pool.ntp.org The address of the NTP server used for time synchronization. The openwrt.pool.ntp.org server is a public NTP server pool.
8 NTP Sync Interval (In Minutes) 15 The interval at which the device will sync its clock with the NTP server, set to every 15 minutes in this case.

Click on save once changes are made.

5.4 Wi-Fi MacID Filtering

Wireless MAC ID Filtering allows you to control which devices can connect to your wireless network based on their MAC (Media Access Control) addresses. This can help enhance security by allowing only specified devices to access the network.

It is further divided into 2 categories,

WIFI 2.4G AP

WIFI 2.4G AP Guest

Before adding the MacIDs the user needs to select the mode from the dropdown menu.

In ‘Change Mode’ select one option,

Blacklist

In blacklist mode, you specify which MAC addresses are not allowed to connect to the wireless network. Devices not on the blacklist will be able to connect.

Whitelist

In whitelist mode, you specify which MAC addresses are allowed to connect to the wireless network. Devices not on the whitelist will be blocked.

To Add the MacID the user needs to click on Add New option.

Specification details are given below:

SN Field Name Sample Value Description
1 Status Enable/Disable Enable or disable the MAC ID filtering.
2 MAC ID Example: e8:6f:38:1a:f2:61 The MAC address of the device to be whitelisted or blocklisted.
3 Network Name Example: WIFI 2.4G AP or Wi-Fi 2.4G AP Guest. The network to apply the MAC ID filtering.

Once the required MAC ID and Network Name is configured the user needs to click on the save button to add the details.

The user needs to click on the edit button to do modifications on the pre-existing configuration.

Once the required MACID / Network Name is modified the user needs to click on the save button to reflect the changed value in the application.

5.5 Routing

In this submodule the user can configure the parameters related to routing of the device like Target address, Networks address etc. Routing configurations allow network packets to be directed between different subnets and networks.

It is further divided into 2 sections,

Static IPV4 Routes

Advanced Static IPV4 Routes

Static IPV4 Routes:

Click on ‘Add’ to add a new interface.

EDIT:

To edit the existing device the user needs to click on the edit option.

Once the changes are done click on the save button to save all the changes.

Click on the deleted button to delete the existing device detail.

Specification details are given below:

SN Field Name Sample Value Description
1 Interface Ex: eth0.1 The network interface to be used for this route. Select the one to use from dropdown.
2 Target Ex: 192.168.20.0 The destination subnet to which traffic should be routed.
3 IPv4 Netmask 255.255.255.0 The subnet mask for the target network.
4 Metric 0 The priority of the route.

Lower values indicate higher priority.

5 IPv4 Gateway Ex: 192.168.10.1 The gateway IP address to be used for routing traffic to the target subnet.
6 Route Type Unicast Standard route for individual destination IP addresses.

Custom changes can be made.

Click on save once configuration changes have been made.

Advanced Static IPV4 Routes:

This is further divided into 2 sections,

Routing Tables

Routing Rules for IPV4

Routing Tables:

Adding a new table in static routing allows you to define specific routes for traffic within a network.

Click on ‘Add’ to add a new Table.

EDIT:

Specification details are given below:

SN Field Name Sample Value Description
1 ID of Table Ex: 1 A unique identifier for the routing table. Multiple tables can be used to define different sets of routing rules, providing flexibility in how traffic is managed.
2 Name of Table Ex: Route A descriptive name for the routing table, making it easier to manage and identify different tables.
3 Target Ex: 192.168.10.0 Specifies the destination network or IP address that the route is intended for.
4 IPv4 Netmask 255.255.255.0 Defines the subnet mask for the target network.
5 Metric Ex: 0 Indicates the priority of the route. A lower metric value means a higher priority. Routes with lower metrics are preferred over those with higher metrics.
6 IPv4 Gateway Ex: 10.1.1.1 Specifies the next hop or gateway IP address through which the traffic to the target network should be routed.
7 Route Type 1.) Unicast

2.) Custom

Unicast: Standard route where packets are sent to a single destination IP address.

Custom: Enables advanced routing configurations or specific protocols that might not be covered by default.


Routing Rules for IPV4:

Click on ‘Add’ to add a new interface.

EDIT:

To edit the existing device the user needs to click on the edit option.

Once the changes are done click on the save button to save all the changes.

Click on the deleted button to delete the existing device detail.

Specification details are given below:

SN Field Name Sample Value Description
1 Interface Ex: ra0 Select the specific network interface on the router through which traffic enters or exits.
2 To Ex: 192.168.10.1 The destination IP address or network. In this case, 192.168.10.1 is the target IP address for routing traffic.
3 IPv4 Netmask Ex: 255.255.255.192 Defines the subnet mask, which helps determine the size of the network.
4 Table ID Ex: 1 Identifies which routing table this rule applies to.
5 From Ex: 192.168.100.1 Specifies the source IP address or network from which the traffic originates. In this case, the traffic is coming from 192.168.100.1.
6 Priority Ex:20 Determines the order in which routing rules are evaluated. Lower numbers have higher priority. If two rules conflict, the one with the lower priority number will be applied first.
7 Outgoing Interface 1.) fwmark

2.) iif (Incoming Interface)

3.) oif (Outgoing Interface)

4.) lookup

5.) blackhole

6.) prohibited

7.) unreachable

1.) This allows you to create rules that apply only to traffic that has been marked in a specific way by the firewall.

2.) This is often used to create rules based on the interface through which traffic is received.

3.) This allows you to control the flow of traffic based on the desired outgoing interface.

4.) It tells the router to check the specific routing table ID mentioned to determine how to route the traffic.

5.) This is used when you want to block traffic without notifying the sender.

6.) Like blackhole but sends an ICMP unreachable message to the sender, indicating that the route is prohibited.

7.) Causes the router to send an ICMP unreachable message to the source IP, notifying that the destination is unreachable.

5.6 DMZ

A DMZ (Demilitarized Zone) is a subnetwork that provides an extra layer of security for an organization's internal network.

In this case we are configuring several services (HTTP, HTTPS, SSH, FTP, DNS) in a DMZ, and each service requires the correct internal port (the port used within the network) and external port (the port used by external clients to access the service) setting


Specification details are given below:

SN Field Name Sample Value Description
1 Enable DMZ Enable/Disable Enable DMZ to configure it further.
2 Host IP Address Ex: 192.168.10.1 This is the internal IP address of the device or server that will be in the DMZ.
3 Protocol 1.) TCP

2.) UDP

3.) ICMP

4.) All

TCP: Used for reliable services like HTTP, HTTPS, FTP, and SSH.

UDP: Often used for services like DNS that don't require as much reliability.

ICMP: Used for sending control messages like "ping."

All: Select this if you're unsure which protocol to allow, but it's less secure.

4 Allow HTTP Internal Port: 80

External Port: 80

Enables web traffic over the unsecured HTTP protocol.

(Port 80 is the standard port for HTTP traffic on our internal network).

5 Allow HTTPS Internal Port: 443

External Port: 443

Enables secure web traffic over HTTPS. (Port 443 is the standard port for HTTPS on our internal network).
6 Allow SSH Internal Port: 52434

External Port: 52434

This is a custom port we’re using for SSH.

The default is 22.

7 Allow FTP Internal Port: 21/20

External Port: 21/20

FTP is used to transfer files between computers.

(These are the standard ports for FTP traffic. Port 21 is used for control commands, and port 20 for the data transfer.)

8 Allow DNS Internal Port: 53

External Port: 53

Standard DNS port within our internal network.

5.7 Others

In this page the user will get to do all the other miscellaneous configuration with respect to the device based on the required parameters. Each utility serves a specific purpose, providing various functionalities for managing and troubleshooting network configurations and statuses.

Specification details are given below:

SN Field Name Sample Value Description
1 Set Date Date and time fields (day, month, year, hour, minute, second) Sets the system date and time to the specified values.
2 Get Date System Retrieves and displays the current system date and time.
3 ipsec status all Command ‘Get’ Displays the status of all IPsec connections.
4 Wi-Fi Scan Command ‘Get’ Initiates a scan for available Wi-Fi networks.
5 iPerf3 Client IP address (e.g., 192.168.10.100) Runs an iPerf3 client to measure network performance.
6 iPerf3 Server Command ‘Run’ Runs an iPerf3 server to measure network performance.
7 Ping IP address or domain (e.g., 8.8.8.8) Sends ICMP echo requests to the specified address to check connectivity.
8 traceroute IP address or domain (e.g., 8.8.8.8) Traces the route packets take to reach the specified address.
9 NTP Sync Command ‘Sync’ Synchronizes the system time with the configured NTP server.
10 Download Files File or database identifier Initiates a download of the specified file or database.
11 Restart Power Command ‘Restart’ Restarts the power of the device.
12 Restart Modem Command ‘Restart’ Restarts the modem.
13 Run AT Command Enter AT command Executes the specified AT command on the modem.
14 Show Board Configuration Command ‘Show’ Displays the current board configuration.
15 Show VPN Certificate Name Command ‘Show’ Displays the name of the VPN certificate in use.
16 Switch SIM to Secondary (Takes >2 mins) Command ‘Run’ Switches the active SIM to the secondary SIM card.
17 Send test SMS Phone number (e.g., +911234567890) message text (e.g., "Hello how are you?") Sends a test SMS to the specified phone number.
18 ReadlatestSMS Command ‘Read’ Reads the most recent SMS received by the device.
19 Data Usage From: Start date (YYYY-MM-DD)

To: End date (YYYY-MM-DD)

Displays data usage statistics for the specified date range.
20 Monthly Data Usage Month: Month (e.g., 07)

Year: Year (e.g., 2024)

Displays data usage statistics for the specified month and year.
21 Modem Debug Info Command ‘Read’ Displays debug information for the modem.
22 Scan Network operators (Takes >3 mins) Command ‘Scan’ Initiates a scan for available network operators.
23 Network operator list (First Perform Scan Network Operators) Command ‘Show’ Displays the list of network operators detected in the previous scan.
24 ReadLogFiles Log file identifier Reads and displays the specified log file
25 Enable ssh (Admin) Command ‘Run’ Enables SSH access for the admin user.
26 Disable ssh (Admin) Command ‘Run’ Disables SSH access for the admin user.
27 ClearSIM1Data Command ‘Clear’ Clears data usage statistics for SIM1.
28 ClearSIM2Data Command ‘Clear’ Clears data usage statistics for SIM2.
29 Create Bridge with SW_LAN Network interface identifier Creates a network bridge with the specified interface and SW_LAN.
30 Show Bridge Command ‘Show’ Displays information about the current network bridges.
31 Delete Bridge Command ‘Delete’ Deletes the specified network bridge.
32 Output Any value Displays output for all the above actions.

5.8 Connection Diagnostics

This can ensure that your connection diagnostics application effectively monitors and reports the status of your network connections, providing valuable data for troubleshooting and performance optimization.

This Application works in 3 parts,

1.) General settings

2.) Connection status and management

3.) Application Start/Stop

General settings:

First make configuration changes in this section and save.

Specification details are given below:

SN Field Name Sample Value Description
1 Enable Connection Diagnostics Enable/Disable This option enables or disables the connection diagnostics functionality.
2 Check Interval (in seconds) Value: 120 Specifies how often (in seconds) the diagnostics checks are performed. In this case, every 120 seconds. (min 60 secs)
3 Number of Pings Value: 5 Determines ping requests sent during each check.
4 Ping Packet Size (in Bytes) Value: 56 Defines the size of each ping packet in bytes.
5 Send to remote MQTT Broker Enable/Disable This option enables the sending of diagnostic data to a remote MQTT broker.
6 Publish Data Format CSV / JSON Specifies the format in which the diagnostic data will be published to the MQTT broker. You can choose either CSV (Comma-Separated Values) or JSON (JavaScript Object Notation).
7 MQTT Broker url Value: broker.hivemq.com The URL of the MQTT broker where the diagnostic data will be sent.
8 TCP port Value: 1883 The TCP port used to connect to the MQTT broker. Port 1883 is the default port for MQTT.
9 Topic Value: 37A26230014/connectionDiagnostics The MQTT topic under which the diagnostic data will be published. This topic is used to categorize and identify the data.


Connection status and management:

To setup a connection,

Click on ‘Add new target’

Enter Target IP (Ex: 8.8.8.8)

Click ‘Add’

Target has been added successfully.

Application Start/Stop:

To check whether the target Ip is sending and receiving packets, you need to start the application to see the desired output.

As shown above, our target Ip is sending packets successfully.

You can Add as many target IP’s you need to monitor.

You can leave the application on for monitoring else ‘Stop’ the application.

5.9 Package Manager

A Package Manager is a tool or interface used to manage software packages (applications, libraries, tools) on a system.

The package manager interface you are looking at likely allows you to manage the software installed on your device, such as networking tools, firmware, or other applications relevant to your system.

This section has 3 sub-sections,

Installed APP

Available APP

Manual Upgrade

Installed APP:

When you select Installed APP, you will see all the software that is actively running or installed on the device.

This could include system utilities, network management tools, monitoring software, or any third-party apps that were previously installed.

Common Actions:

  • View Details: You can check each application's version, source, and installation date.
  • Uninstall: You can remove applications that are no longer needed.
  • Check for Updates: You can see if there are updates available for any installed application.


Available APP:

When you select Available APP, you will see a list of software that can be installed from the system's repositories or sources.

These applications are not yet installed but are ready for installation if needed.


Common Actions:

  • Install: You can install any of the available applications by selecting them.
  • View Details: You can review each application's description, version, and functionality before installing.
  • Search: You can search for specific apps by name or category.


Manual Upgrade:

In contrast to automatic updates, Manual Upgrade lets you take control over which packages or applications you want to upgrade and when.

This can be useful if you need to avoid upgrading certain apps due to compatibility or testing purposes, or if you want to perform updates at a specific time.

Common Actions:

  • Check for Updates: The system will check for available updates for installed apps.
  • Select Updates: You can select which packages to update manually.
  • Upgrade Now: You can start the upgrade process immediately for selected apps.

6.Logout

The user should click on log out option to logged out from the router application.