RV00 User Manual

From Silbo Networks

Connecting with the device to the System (Laptop/Desktop)  

To log in to SILBO_RV00 by connecting the router to your laptop or desktop via LAN or using Wi-Fi, please follow the steps below.

Connecting via LAN:

Connect your laptop's LAN port to one of the router's LAN interfaces. Ensure that you select any LAN interface (there are 4 available) while making sure the WAN interface is not used.

                                                                                                                 

How to connect with the SILBO_RV00 application

Once the LAN connection is established between the device and the laptop or the desktop

Please open the command prompt and ping to get the IP config of that device.

Type the command Ipconfig

How to connect with the SILBO RB44 application

It will provide the Ip address/url of that device through which the application can be accessed.

Log In

Open the web browser and type the IP address in the URL.

It will show the log in page of the application.

Give the valid credentials for the username and password to login to the application page.

Once the user credentials are provided it will direct to the landing page of the application.

       

The “Status” landing page shows all the detailed specification of the device like system, memory storage and connection tracking etc.

The application is divided into 6 Modules.

  • Info
  • Status
  • Settings
  • Features
  • Maintenance
  • Routing
  • Logout

1. Info

The “Info” module provides the information about the devices to the user.

It provides all the specification related to the hardware, firmware, Networks and the Connection uptimes.

It has 3 submodules.

  • Overview
  • System Log
  • Kernel Log


1.1 Overview

In overview module it displays all the specification categorically of a device like System, Memory, storage, Connection tracking, DHCP Lease.

System:

In this section it displays the hardware configured specification of the device.

The specifications details are as follows,

SN Field name Sample value Description
1 Hostname 41A38230008 This field displays the router serial number of the device
2 Model


silbo-RV00

This field displays the model number of the device
3 Firmware Version and IPK Version 1.08_1.08-RC1 This field displays the firmware version and IPK version
4 Kernel Version 5.4.215 This field displays the kernel version of the device
5 Local Time Monday, November 4, 2024 at 10:11:01 AM This field displays the local time
6 Uptime 0h 9m 5s This field displays the uptime of the device
7 CPU Load Average 0.09 (last minute) | 0.25 (last 5 minutes) | 0.19 (last 15 minutes) This field displays the CPU average load

Memory:

In this section it displays the memory configured specification of the device.

The specifications details are as follows.

SN Field name Sample value Description
1 Total Available 68676 kB / 124208 kB (55%) This field displays the total availability of memory space in the device
2 Free 59344 kB / 124208 kB (47%) This field displays the Free memory space in the device
3 Cached 312 kB / 124208 kB (0%) This field displays the Cached memory space in the device
4 Buffered 9332 kB / 124208 kB (7%) This field displays the Buffered memory space in the device

Storage:

In this section it displays the status of storage as root and temporary usage specification of the device.

The specifications details are as follows.

SN Field name Sample value Description
1 Root Usage


796 kB / 15488 kB (5%)

This field displays the total root usage of the device
2 Temporary Usage


312 kB / 62104 kB (0%)

This field displays the total temporary usage of the device

Connection Tracking:

In this section it displays the status of connection tracking for the device.

DHCP Leases:

In this section it displays the DHCP lease of the temporary assignment of an IP address to a device on the network.

The specifications details are below.

SN Field name Sample value Description
1 Host Name KermaniK-LT This field displays the configured Host Name/Username for that device.
2 IPv4-Address 192.168.10.147 This field displays the IP address of the device.
3 MAC-Address 34:73:5a:bb: ab:7a This field displays the MAC-Address of the device.
4 Lease time remaining 11h 53m 49s This field displays the lease time remaining for the device.

1.2 System Log

This page provides on screen System logging information. In this page the user gets to view the system logs.

1.3 Kernel Log

This page provides on screen Kernel logging information.

In this page the user gets to view the Kernel logs.

2.Status

In this module the user can view the status of the router device with respect to the network, Wan, modem etc.

It has 3 submodules.

  • Interfaces
  • Internet
  • Routes

2.1 Interfaces

Each network device (interface) is associated with specific traffic statistics, uptime, and status. Active interfaces are operational, while inactive interfaces are not currently transmitting data.

Looking on the network status the user can check if the EWAN (Ethernet WAN) is up.

2.2 Internet

In this submodule the user can view the status of the internet connections.

Since this is no LTE and no Wi-Fi module, only EWAN status can be shown.

  To see the latest status of the internet connection the user needs to click on the refresh button.

2.3 Routes

This configuration shows how the router directs traffic between different networks and interfaces, ensuring proper communication within the local network and to external networks via the default gateway.

ARP Table: Maps IP addresses to MAC addresses for devices on the network, helping in identifying which device is on which interface.

IPv4 Routes: This shows which network is directly connected on which interface.

Example: Network 192.168.10.0/24 is directly connected on interface eth0.1.

IPv6 Routes: The IPv6 route entry defines paths for IPv6 traffic, like IPv4 routing.

  • Target: ::1/128

This specifies the loopback address for IPv6, which is equivalent to 127.0.0.1 in IPv4. The /128 means it’s a single address (just::1), not a range of addresses.

  • Gateway: ::

Similar to 0.0.0.0 in IPv4,:: here indicates that there is no gateway for the ::1 route, as it’s a local route to the loopback interface.

  • Interface: lo

The lo (loopback) interface is used for this route. Loopback is a virtual interface for internal communication within the host.

3. Settings

In this “Setting” module the user can Configure/update all the required parameters related to Network, Internet, VPN, Firewall, Traffic Shaping, Loopback Rule, Remote monitoring, Tunnel as per requirement.

IT consist of 9 submodules.

  • VLAN
  • Network
  • Internet
  • VPN
  • Firewall
  • Traffic Shaping
  • Loopback Rule
  • Remote Monitoring
  • Tunnel

3.1 VLAN

VLAN (Virtual Local Area Network) is a network within a network that segregates traffic into different logical networks on the same physical hardware. VLANs help in managing traffic more effectively and securely.

It is further divided into 2 sections,

Port-Based VLAN

Tagged Port Configuration

Port-Based VLAN:

A VLAN configuration method where network ports are assigned to specific VLANs.

EDIT:

To add a new VLAN ID, click on ‘Add Device’.

To edit the existing device the user needs to click on the edit option.

Once the changes are done click on the save button to save all the changes.

Click on the deleted button to delete the existing device detail.

Specification details are given below:

SN Field Name Sample Value Description
1 VLAN ID 1 This is a unique identifier for a VLAN within a network.
2 Port 0 Untagged When a port is set as untagged for a VLAN, it means that traffic entering or exiting this port is automatically associated with that VLAN without any VLAN tags being added to the frames.
3 Port 1 Untagged
4 Port 2 tagged When a port is set as tagged for a VLAN, it means that traffic on this port will include VLAN tags in the Ethernet frames. These tags carry the VLAN ID, allowing switches and other devices to know which VLAN the traffic belongs to.
5 Port 3 Untagged
6 Port 4 OFF When a port is marked as off for a VLAN, it means that the port is not participating in that VLAN at all. It will neither send nor receive traffic associated with that VLAN.

Save and update the page.

Tagged Port Configuration:

EDIT:

To add a new VLAN ID, click on ‘Add Device’.

To edit the existing device the user needs to click on the edit option.

Once the changes are done click on the save button to save all the changes.

Click on the deleted button to delete the existing device detail.

Specification details are given below:

SN Field Name Sample Value Description
1 Type 802.1Q IEEE 802.1Q is the standard protocol for VLAN tagging in Ethernet networks.
2 Parent Interface Port 2 It is the underlying physical interface like port 2 that carries the VLAN-tagged traffic.

Save and update the page.

3.2 Network

In this section the user does all the setting related configuration with reference to network.

Ethernet Settings:

In this page it will display all the configured port that is attached with the device.

For this device 5 ports are configured.

Ethernet mode can be configured as WAN and as LAN as well.

Ethernet WAN Connection settings can be configured as DHCP, Static and PPOE.

Note: if required, add an interface in Internet page under Settings

EDIT:

To add a new Interface, click on ‘Add’.

To edit the existing device the user needs to click on the edit option.

Once the changes are done click on the update button to save all the changes.

Click on the deleted button to delete the existing device detail.

Specification details are given below:  Type: WAN

SN Field Name Sample Value Description
1 Physical Device Ex: eth0.5 This indicates a network interface on which our network is connected. This setting is by default (Editable).
2 Type WAN/LAN This designates whether the interface is part of the WAN or LAN.

WAN: Connects the device to the internet.

LAN: Connects the device to the internal network.

                                                                    Protocol: Static
3 Static IP Address Ex: 192.168.1.10 The manually assigned IP address for the interface.
4 Static Netmask Ex: 255.255.255.0 Subnet mask corresponding to the IP address.
5 Static Gateway Ex: 192.168.1.1 The IP address of the gateway (router) that the interface will use to send traffic outside its own subnet.
                                                                    Protocol: DHCP
6 DHCP Gateway Ex: 10.1.1.1 The IP address of the DHCP server (often the same as the router or gateway).
                                                                    Protocol: PPPoE
7 Username Any Name The username provided by your ISP for PPPoE authentication.
8 Password ***** The password provided by your ISP for PPPoE authentication.
9 Access Concentrator Typically, the name of the ISP's PPPoE server.
10 Service Name Sometimes required by ISPs, this field specifies a particular service offered by the ISP.
11 Gateway Ex: 0.0.0.0 The IP address used as the default route.
12 MAC Address Ex: D0:93:95:B0:98:6B The hardware (MAC) address of the network interface. This is unique to every network device.
13 Override MAC Address Ex: D0:93:95:B0:98:6B This field allows you to manually set a different MAC address if needed.

If left blank, the default MAC address is used.

14 Create Firewall Zone Enable/Disable You can assign this interface to a particular firewall zone, which determines its access rules (e.g., WAN zone for internet traffic, LAN zone for internal traffic).
Advanced Settings: Enable/Disable
15 Broadcast Ex: 192.168.123.34 Broadcast address for the network, typically calculated based on the IP and subnet mask.
16 Override MTU Ex: 1500 MTU size controls the maximum packet size that can be sent over the network.

Default is usually 1500 bytes.

17 Delegate Enable/Disable If checked, it allows delegation of prefixes for IPv6, often left unchecked unless needed.
18 Force Link Enable/Disable Forces the interface to be up even if no physical link is detected.
19 IPv4 Route Table Enable/Disable This field is used to specify static routes for IPv4.
20 Table No. 254: Default main routing table.

100: Custom routing table for specific purposes.

Default Table (Main Table): Usually, there is a default routing table (often Table No. 254 or 255) where all the routes are stored by default.

Custom Table: You can specify a different table number if you are managing multiple routing policies (e.g., VoIP traffic, VPN traffic).

Type: LAN

Specification details are given below:

SN Field Name Sample Value Description
1 Physical Device Ex: eth0.1 This is the network interface identifier.
2 Type WAN/LAN This designates whether the interface is part of the WAN or LAN.

WAN: Connects the device to the internet.

LAN: Connects the device to the internal network.

3 Protocol Static This means that the IP address, netmask, and other network settings are manually configured rather than being automatically assigned by a DHCP server.
4 IP Address Ex: 192.168.10.1 This is the static IP address assigned to the interface. It acts as the gateway IP address for devices connected to this LAN.
5 Static Netmask Ex: 255.255.255.0 This is the subnet mask for the network.
6 MAC Address Ex: D0:93:95:B0:98:6C This is the hardware (MAC) address of the network interface, which uniquely identifies this device on the network.
7 Override MAC Address This allows you to manually enter a different MAC address if needed.
8 Enable DNS Enable/Disable If this option is enabled, the interface will act as a DNS resolver for the devices on the LAN, using the specified DNS server.
9 DNS Server Address Ex: 8.8.8.8 This is the IP address of the DNS server that will be used by devices on the LAN to resolve domain names to IP addresses.

More than one DNS Address can be added.

10 Enable DHCP Server Enable/Disable If enabled, this setting allows the interface to function as a DHCP server, automatically assigning IP addresses to devices connected to the LAN.
11 DHCP Start Address 70 The DHCP server will begin assigning IP addresses starting from 192.168.10.70
12 DHCP Limit 100 This specifies the number of IP addresses the DHCP server can assign. Starting at 192.168.10.70 and with a limit of 100, the server can assign addresses up to 192.168.10.169.
13 Lease Time Duration Hours-(H)

Minutes-(M)

Seconds-(S)

Hours-(H): This indicates that the lease time for each IP address assignment is measured in hours.

Minutes-(M): This indicates that the lease time for each IP address assignment is measured in minutes.

Seconds-(S): This indicates that the lease time for each IP address assignment is measured in seconds.

14 Lease Time 12 The DHCP lease time is set to 12 hours. After this period, a device must renew its IP address lease with the DHCP server to continue using the assigned IP address.
15 Create Firewall Zone Enable/Disable You can assign this interface to a particular firewall zone, which determines its access rules (e.g., WAN zone for internet traffic, LAN zone for internal traffic).
16 Internet Over SW_LAN Enable/Disable Allow all outbound traffic from the LAN to the internet.
Advanced Settings: Enable/Disable
17 Broadcast Ex: 192.168.123.34 Broadcast address for the network, typically calculated based on the IP and subnet mask.
18 Override MTU Ex: 1500 MTU size controls the maximum packet size that can be sent over the network.

Default is usually 1500 bytes.

19 Delegate Enable/Disable If checked, it allows delegation of prefixes for IPv6, often left unchecked unless needed.
20 Force Link Enable/Disable Forces the interface to be up even if no physical link is detected.
21 IPv4 Route Table Enable/Disable This field is used to specify static routes for IPv4.

Save and Update once configuration changes have been made.

Loop back IP settings:

The loopback IP address, commonly represented as 127.0.0.1, is a special address used for testing network connectivity on a local machine.


It allows a device to send network messages to itself without involving external networks, making it useful for troubleshooting and diagnostics.


However, this IP can be changed as per requirement and to do that, Navigating to Setting>>Network configuration>> Loopback IP settings can be changed/updated.


After configuring all the required information, click on save.

Flow Offloading:

Specification details are given below:

SN Field Name Sample Value Description
1 Enable Flow Offloading Enable/Disable

(Disable by default)

Hardware Flow Offloading: If supported by your device, enabling flow offloading can significantly increase throughput by reducing the CPU load.

Software Flow Offloading: Even without specialized hardware, software-based flow offloading can help optimize network traffic processing.

2 SMP IRQ Affinity Enable/Disable

(Disable by default)

SMP IRQ Affinity: When enabled, this setting can bind specific IRQs to specific CPU cores, which can optimize the handling of interrupts and improve overall system performance.

After configuring all the required information, click on save.

3.3 Internet

As shown below, this section has 4 categories,

Status

General settings

Failover

Load Balancing

In ‘Status’ tab user can see the active network connections on the device as shown above.

General Settings:

In general settings, select any one option from the drop-down menu which you wish to imply and click on save.

Failover

Load Balancing

Click on save and update.


Failover:

NOTE: Please verify that the name to be added is located in the interface section of the status tab.

EDIT:

The specifications details are below.

SN Field name Sample value Description
1 Priority Ex: 5 Setting a priority of 1 means this connection has the highest priority and will be used before any others with a higher priority number.
2 Select Track IP Numbers 2 In this dropdown the user needs to select the track number for the Ips. This specifies the number of IP addresses that will be used for tracking the status of the connection.
3 TrackIP1 8.8.8.8 The system will ping this IPV4 IP address to check if the connection is up and working. You can even add any whitelisted IP.
4 TrackIP2 8.8.4.4 The system will ping this IPV4 IP address to check if the connection is up and working. You can even add any whitelisted IP.
5 Reliability 1 If reliability is set to 1, it might mean the connection is considered reliable if it successfully pings at least one of the tracked IP addresses.
6 Count 1 Setting Count to 1 means the device will send one ping to each IP address to check for connectivity.
7 Up 3 If set to 3, the connection will be considered "up" only if all three pings are successful.
8 Down 3 If set to 3, the connection will be considered "down" if all three pings fail.

Click on save and update tab.


Load Balancing:

Load balancing is a network management technique used to distribute traffic across multiple network connections or servers to optimize resource use, maximize throughput, minimize response time, and ensure reliability.

Task: Distributes network traffic evenly across multiple connections (e.g., multiple WAN links) or servers.

Purpose: This ensures that no single connection or server is overwhelmed with too much traffic, which could lead to congestion and slower performance.

EDIT:

Specification details are given below:

SN Field Name Sample Value Description
1 Traffic Distribution Ratio Ex: 60% If you have two connections and set one to 60% and the other to 40%, traffic will be distributed accordingly.

The ratio must be the same for CWAN1_0 and CWAN1_1.

2 Select Track IP Numbers 2 The system will track two IP addresses to determine if the network connection is active and reliable.
3 TrackIP1 8.8.8.8 The system will ping this IPV4 IP address to check if the connection is up and working. You can even add any whitelisted IP.
4 TrackIP2 8.8.4.4 The system will ping this IPV4 IP address to check if the connection is up and working. You can even add any whitelisted IP.
5 Reliability 1 With a reliability setting of 1, the connection might be considered reliable if at least one ping is successful.
6 Count 1 The system will send one ping to each tracked IP to check the connection's status.
7 Up 3 The system requires 3 successful pings for the connection to be marked as "up."
8 Down 3 If 3 pings fail, the system will mark the connection as "down," and it may switch to an alternate connection if available.

Click on save and update tab.

3.4 VPN

VPN stands for Virtual Private Network, it establishes a connection between the system and a remote server, which is owned by a VPN provider.

Creating a point-to-point tunnel that encrypts the personal data, masks the IP address, and allows to block the required website to blocks via firewalls on the internet.

Navigate to settings >= VPN, general settings and you will see all VPN options you wish to use.

There are 6 types of setting available under VPN configuration.

  • General Settings
  • IPSEC
  • Open VPN
  • Wireguard
  • Zerotier
  • PPTP

*Refer the image below*

General Settings:

In this page the user must choose which type of VPN connection is required for the device.

The user must select from IPSEC, Open VPN, Wireguard, Zerotier or PPTP based on its requirement.

If required, the user can select all the options.

Click on save after selecting the option based on its requirement.

IPSEC:

IPSEC VPN is used to create a VPN connection between local and remote networks.

To use IPSEC VPN, the user should check that both local and remote routers support IPSEC VPN feature.

In this page the user can add/edit/delete the IPSEC VPN connection for the device.

The user needs to click on the update button once the required configuration is completed.

In IPSEC the user needs to click on edit button to edit the configuration of an existing VPN connection.

Click on update once done with configurations.

The tunnel will show established, showing the connection has been made.

Detailed specifications are below:

SN Field name Sample value Description
1 IPSEC Site to Site VPN In this dropdown the user should select the IPSEC connection type.
2 IPSEC Role Client/Server In this dropdown box the user needs to select the IPSEC role. The device is acting as a client in the VPN setup (in this example).
3 Connection Type Tunnel In this dropdown the user needs to select the connection type. The user should select on the connection enable check box.
4 Connection mode Route/add/start/trap In this drop down list the user should select the mode for the connection. In this example start is selected which means the VPN connection is initiated automatically.
5 Remote Server IP ******** The IP address of the remote VPN server.
6 Local ID 3.3.3.3 The user needs to set the local id. It is the identification for the local VPN client.
7 No. of local subnets 1 In this dropdown the user needs to select how many subnets will be connected.
8 Local Subnet 1 172.16.31.25/32 In this text box the user needs to put the specific local subnet included in the VPN.
9 Remote id 1.1.1.1 In this text box the user needs to put the id of the remote connection. It is the identification for the remote VPN server.
10 No of remote subnet 1 In this dropdown the user needs to select how many subnets it will be connected remotely.
11 Remote subnet 10.1.1.0/24 In this text box the user needs to put the address of the remote subnet. The specific remote subnet included in the VPN.
12 Key exchange Ikev1 In this dropdown the user should select the which key exchange version to be selected.
13 Aggressive Yes/No In this dropdown the user should select either yes or no.
14 IKE Lifetime (In Seconds) 86400 The lifetime of the IKE phase in seconds (1 day).
15 Lifetime (in seconds) 28800 The lifetime of the IPsec SA (Security Association) in seconds (8 hours).
16 Enable DPD Detection 1

0

Indicates whether Dead Peer Detection is enabled to detect a lost connection. Enable this option as per server-side settings.
17 Time Interval (In Seconds) 60 This option is available only if DPD Detection is enabled. The time interval is the interval for DPD checks.
18 Action Restart/clear/hold/

trap/start

Restart: Action to take when DPD detects a lost connection (restart the connection). Select as per server-side setting.
19 Authentication Method PSK PSK: Pre-shared key is used for authentication. Select this option for authentication as per sever side setting.
20 Multiple Secrets 1/0 Indicates whether multiple PSK secrets are used. Enable only if required.
21 PSK Value ****** Pre-shared key value (masked for security).
Proposal settings Phase I
22 Encryption Algorithm AES 128

AES 192

AES 256

3DES

AES 256: Encryption algorithm for Phase I. Select as per server-side configuration. Both server and client should have same configuration.
23 Authentication Phase I SHA1

MD5

SHA 256

SHA 384

SHA 512

SHA 512: Authentication algorithm for Phase I.

Select as per server-side configuration. Both server and client should have same configuration.

24 DH Group MODP768(group1)

MODP1024(group2)

MODP1536(group5)

MODP2048(group14)

MODP3072(group15)

MODP4096(group16)

MODP2048(group14): Diffie-Hellman group for key exchange.

Select as per server-side configuration. Both server and client should have same configuration.

Proposal settings Phase II
25 Hash Algorithm AES 128

AES 192

AES 256

3DES

AES 256: Encryption algorithm for Phase II. Select as per server-side configuration. Both server and client should have same configuration.
26 Authentication Phase II SHA1

MD5

SHA 256

SHA 384

SHA 512

SHA 512: Authentication algorithm for Phase II.

Select as per server-side configuration. Both server and client should have same configuration.

27 PFS Group MODP768(group1)

MODP1024(group2)

MODP1536(group5)

MODP2048(group14)

MODP3072(group15)

MODP4096(group16)

MODP2048(group14): Perfect Forward Secrecy group.

Select as per server-side configuration. Both server and client should have same configuration.


For detailed configuration of IPSEC, click the below url.

https://wiki.silbonetworks.com/index.php/Main_Page

Open VPN:

To use the VPN feature, the user should enable OpenVPN Server on the router, and install and run VPN client software on the remote device.

The user needs to “upload” the respective certificate from a valid path and then click on the “Update.”

Only the TAP connection needs a bridge. The tun connection does not require a bridge. Here we have established a TUN connection.

By clicking on the enable/disable button, the user can start/stop the VPN connection.

VPN TUN has been established.

Same way VPN TAP can also be established with the help of bridging.


WireGuard:

WireGuard is simple, fast, lean, and modern VPN that utilizes secure and trusted cryptography.

Click on “Edit” to start configurations as needed.

EDIT:

Specification details are given below:

SN Field name Sample value Description
1 Wireguard Role Client/Server In this dropdown box the user needs to select the wireguard role.
2 WireGuard Tunnel Over IPV4/IPV6 IPV4: Use this if your network and endpoint (WireGuard server) support only IPv4.

IPV6: Use this if your network and endpoint support IPv6.

3 Enable Failover Enable/Disable This option allows the VPN connection to automatically switch to a backup connection if the primary connection fails.
4 Enable IPV4 Enable/Disable This enables IPv4 traffic to be routed through the WireGuard tunnel.
5 Enable IPV6 Enable/Disable Enable this if your network and the destination support IPv6.
6 Listen Port 51820 This is the default port that WireGuard uses to listen for incoming connections.
7 Endpoint Host port 51820 This is the port on the WireGuard server that the client will connect to.
8 Peer Publickey ***** This is the public key of the WireGuard server that the client uses to establish a secure connection.
9 Enable Default Route Enable/Disable Enable this if you want all network traffic (not just specific routes) to be routed through the WireGuard VPN.

Save and update the page after configuration has been done.

Zerotier:

Go to ZeroTier Central and sign up for a free account. In ZeroTier Central, click on "Create a Network". This will generate a unique 16-digit network ID for your new network.

Go to settings => VPN, in general settings, enable ZeroTier and save.

Copy and paste the unique 16-digit network ID in the edit section.

Click on the save button after the required configuration.

SN Field name Sample value Description
1 NetworkID Ad2769hfkw2345f4 In this dropdown box the user needs to paste the unique 16-digit network id.
2 Listen Port 9993 Default


PPTP:

This configuration is for setting up a PPTP (Point-to-Point Tunnelling Protocol) VPN connection.

PPTP is a protocol that enables secure data transmission across public networks like the internet, often used to connect to remote networks or access resources securely.

*Refer the image below*

EDIT:

Specification details are given below:

SN Field Name Sample Value Description
1 PPTP Role Client/Server Client: meaning it will initiate the connection to the remote PPTP server.

Server: means this device will accept incoming PPTP connections from clients, which can be users or devices that need remote access to the local network or internet via this server.

PPTP Role: CLIENT
2 Default Route Enable/Disable Enabling the default route means that all network traffic will be routed through the VPN tunnel once the connection is established.
3 Metric Ex: 0 The metric is a value that defines the priority of this route among other available routes. Lower metrics indicate higher priority.
4 Server IP Ex: 192.168.10.1 This is the IP address of the PPTP server the client will connect to.
5 Interface Any

EWAN5

Selecting the correct interface is essential because it tells the system which network adapter should be used to establish the VPN connection.
6 Username ****** This field is the login username for the PPTP server.
7 Password **** This is the password associated with the username.
PPTP Role: SERVER
8 Local IP Ex: 192.168.0.1 This IP address (192.168.0.1) is the local IP of the PPTP server on its network. Clients connecting to the VPN will see this address as their gateway or endpoint within the VPN.
9 Remote IP Range Ex: 192.168.0.20-30 This range defines the pool of IP addresses that the server will assign to connected VPN clients. Here, any client connecting to the server will receive an IP address between 192.168.0.20 and 192.168.0.30, which provides up to 11 possible addresses for simultaneous connections.
10 Username Ex: User1 This is a username that the client will use to authenticate with the PPTP server. In this case, User1 is designated as an authorized user.
11 Password ***** The password associated with User1 is required to complete the authentication.

Once Configured, click on save and update.

3.5 Firewall

A firewall is a layer of security between the network and the Internet.

Since a router is the main connection from a network to the Internet, the firewall function is merged into this device.

Every network should have a firewall to protect its privacy.

To configure a Firewall, navigate to settings <= firewall,

There are 6 types of setting available under firewall.

  • General Settings
  • Port forwards
  • Traffic Rules
  • SNAT traffic Rules
  • Parental Control
  • Zone Forwarding

General Settings:

General settings are subdivided into 2 parts,

1.) General settings

In general settings, the settings that are made are default settings and can be changed according to user’s preference.

Specification details are below:

SN Field Name Sample Value Description
1 Enable SYN-flood protection Enabled This is enabled by default; setting can be changed if required.
2 Disable IPV6 Disabled This is enabled by default; setting can be changed if required.
3 Drop invalid packets Disabled This is enabled by default; setting can be changed if required.
4 TCP SYN Cookies Disabled This is enabled by default; setting can be changed if required.
5 Input Reject/Accept By default, the setting is ‘Reject’ but this needs to be changed to ‘Accept’ compulsory.
6 Output Reject/Accept By default, the setting is ‘Reject’ but this needs to be changed to ‘Accept’ compulsory.
7 Forward Reject/Accept By default, the setting is ‘Reject’ but this needs to be changed to ‘Accept’ compulsory.


2.) Zone settings

In zone settings, there’s an option to add “New Zone”, according to user’s requirement.

Port Forwards:

Port forwarding is a feature in a router or gateway that allows external devices to access services on a private network.

It maps an external port on the router to an internal IP address and port on the local network, enabling applications such as gaming servers, web servers, or remote desktop connections to be accessed from outside the network.

This helps in directing incoming traffic to the correct device within a local network based on the port number, enhancing connectivity and accessibility.

EDIT:

Click on the save button after the required configuration.

Specification details are given below:

SN Field name Sample value Description
1 Name Example: Web_Server_Forward Field must not be empty. Provide a name for the rule to easily identify it.
2 Protocol Example: TCP+UDP Select the protocol for the rule.

Options typically include TCP+UDP, TCP, UDP, ICMP, Custom.

3 Source zone Example: SW_LAN Select the source zone where the traffic is originating from. Options typically include EWAN2,SW_LAN,CWAN1,CWAN1_0,CWAN1_1,VPN
4 Source MAC address [optional] Example: any any: Leave as any if you don't want to specify a MAC address.
5 Source IP address[optional] Example: Leave blank if not needed. Optionally specify an IP address or range.
6 Source port Example: 80, 443 (if matching traffic for web server ports) Specify the source port or port range.
7 Destination zone Example: SW_LAN Select the destination zone where the traffic is heading to.
8 Destination IP address Leave blank if not needed. Optionally specify the destination IP address or range.
9 Destination port Example: 80 (if redirecting to a web server port) Specify the destination port or port range.

Traffic Rule:

"Traffic rules" refer to the policies and regulations that govern the flow of data packets within a network.

To allow new traffic, click on “Add and Edit” in “New Traffic Rule”.

EDIT:

Specification details are below:

SN Field name Sample value Description
1 Name Example: Allow_HTTP_and_HTTPS Field must not be empty: Provide a descriptive name for the traffic rule.
2 Restrict to Address Family 1.      Options: IPv4, IPv6

2.      Example: IPv4 if dealing with typical internet traffic.

Select the address family to generate iptables rules for.
3 Protocol Example: TCP+UDP TCP+UDP: Match incoming traffic using the given protocol.
4 Match ICMP Type Example: any Match all ICMP types if set to any. Specific types can be chosen if needed.
5 Source Zone Example: LAN Specifies the traffic source zone.
6 Enable DDoS Prevention Example: ‘Checked’ if you want to enable DDoS prevention measures Enable or disable Distributed Denial of Service (DDoS) prevention.
7 Limit Example: 10/minute to limit matches to 10 times per minute. Maximum average matching rate; specified as a number, with an optional /second, /minute, /hour, or /day suffix.
8 Limit Burst Defines how many packets or connections can exceed the rate limit before the limiting mechanism kicks in.
9 Source MAC Address Example: any any: Match traffic from any MAC address or specify a particular MAC address.
10 Source Address Example: 192.168.1.0/24 Match incoming traffic from the specified source IP address or range.
11 Source Port Example: any if all source ports should be matched any: Match incoming traffic from the specified source port or port range.
12 Destination Zone Example: WAN Specifies the traffic destination zone.
13 Destination address Options: Any, or a specific IP address/subnet. The IP address or range to which the incoming traffic is directed.
14 Destination port Options: Any, or a specific port/port range. Used to allow or block traffic to specific services, like permitting only HTTP (port 80) traffic.
15 Action Example: ACCEPT Options: ACCEPT, DROP, REJECT. Specify the action to take for matched traffic.
16 Extra arguments Example: --log-prefix "Blocked: " to add a log prefix to log messages for this rule. Passes additional arguments to iptables. Use with care as it can significantly alter rule behaviour.

Click on save once configured.

SNAT Traffic Rule:

For configuring SNAT (Source Network Address Translation) traffic rules, you can control how outbound traffic from your local network is translated to a different IP address as it exits the network.

To add new source NAT,

Click on “ADD” in “New Source NAT:”

EDIT:

Specification details are below:

SN Field name Sample value Description
1 Name Example: SNAT_WAN_to_LAN Field must not be empty: Provide a unique and descriptive name for the SNAT rule.
2 Protocol Example: TCP+UDP TCP+UDP: Select the protocols that the SNAT rule will apply to.
3 Source Zone Example: wan wan: Specifies the source zone from which the traffic originates.
4 Source IP Address Example: any or a specific range like 192.168.1.0/24 -- please choose --: Specify the source IP address or range. Leave empty if the rule applies to any source IP.
5 Source Port Example: any any: Specify the source port or port range from which the traffic originates.
6 Destination Zone Example: lan lan: Specifies the destination zone to which the traffic is directed.
7 Destination IP Address Example: any or a specific IP like 192.168.1.100 -- please choose --: Specify the destination IP address or range. Leave empty if the rule applies to any destination IP.
8 Destination port Example: any any: Specify the destination port or port range to which the traffic is directed.
9 SNAT IP Address Example: 203.0.113.5 (an external IP address) -- please choose --: Specify the IP address to which the source IP should be translated.
10 SNAT Port Example: Leave empty if not needed, or specify a port like ‘12345’ Optionally, rewrite matched traffic to a specific source port. Leave empty to only rewrite the IP address.
11 Extra Arguments Example: --log-prefix "SNAT_traffic: " (to add a log prefix to log messages for this rule) Pass additional arguments to iptables. Use with care as it can significantly alter rule behaviour.

Click on save once configured.

Parental Control:

For configuring parental control rules, you want to set restrictions based on time, source, and destination zones, as well as specific devices.

To add parental control in firewall,

Click on “Add and Edit” in “New parental control:” field.

EDIT:

Specification details are given below:

SN Field Name Sample Value Description
1 Name Example: Parental_Control_Sunday Field must not be empty: Provide a unique and descriptive name for the parental control rule.
2 Proto all all: This specifies that the rule will apply to all protocols.
3 Source Zone Example: lan Field must not be empty: Please look at Firewall->Zone Settings to find zone names.
4 Destination Zone Example: wan Field must not be empty: Please look at Firewall->Zone Settings to find zone names.
5 Source MAC Address Example: 00:1A:2B:3C:4D:5E Field: Enter the MAC address of the device you want to apply the parental control rule to. This is useful for restricting specific devices.
6 Target Example: Reject Accept: This specifies the action to take. For parental controls, you might want to use ‘Reject’ or ‘Drop’ to block traffic.
7 Weekdays Example: Sunday Sunday: Specify the days of the week when the rule should be active.
8 Month Days Example: All All: Specify the days of the month when the rule should be active.
9 Start Time (hh:mm:ss) Example: 18:00:00 (6:00 PM) Field must not be empty: Specify the start time when the rule should begin to apply.
10 Stop Time (hh:mm:ss) Example: 22:00:00 (10:00 PM) Field must not be empty: Specify the stop time when the rule should end.

Click on save once configured.

Zone Forwarding:

Zone forwarding in network configuration allows traffic to be directed from one zone to another.

To ADD new zone,

Click on “Add” in “New Zone Forward:” field.


*Refer the image below*

EDIT:

Specification details are below:

SN Field Name Sample Value Description
1 Source Zone Example options: CWAN (1,2,3), EWAN (1,2,3), VPN & custom. --please choose--: Select the source zone from which the traffic originates.
2 Destination Zone Example options: SW_LAN, EWAN3 & custom. --please choose--: Select the destination zone to which the traffic is directed.

Click on save once configured.

3.6 Traffic Shaping

Traffic shaping also known as SQM (Smart Queue Management).

The combination of the correct interface, queueing discipline, setup script, and accurate

upload/download speed value allows SQM to effectively reduce latency, manage congestion, and

improve overall network performance.

EDIT:

Specification details are given below:

SN Field Name Sample Value Description
1 Interface Options:

eth0.1

eth0.5

ra0 (WiFi 2.4 GHz)

wlan0 (WiFi 5 GHz)

eth1

You choose the interface corresponding to the connection you want to manage, whether it's a wired connection (eth0.x, eth1) or a wireless one (ra0, wlan0).
2 Queueing Discipline Options:

Cake

fq_code

You select the appropriate qdisc based on your needs; Cake is often preferred for its advanced features and ease of configuration.
3 Queue Setup Script Options:

piece_of_cake.qos

layer_Cake.qos

Choose the script that best suits your network environment; layer_Cake.qos provides more features, while piece_of_cake.qos is easier to use.
4 Upload Speed (kbps) 10000 kbps This field specifies the maximum upload speed in kilobits per second that your connection can handle.
5 Download Speed (kbps) 85000 kbps This field specifies the maximum download speed in kilobits per second that your connection can handle.

Click on save once configured.

3.7 Loopback Rule

In this page the user can configure the port where he wants to forward the traffic to. Here the user can add/edit/delete different ports as per the requirement.

The user should click on ‘add’ and then ‘edit’ to do the required changes in the port and enter the valid information in each section to configure the port for forwarding.

EDIT:

Specification details are given below:

SN Field Name Sample Value Description
1 Name Example: loopback Provide a descriptive name for the rule.
2 Protocol Example: TCP+UDP TCP+UDP: Select the protocols that the rule will apply to.
3 Source IP Address [Optional] Example: any or a specific IP range like 192.168.1.0/24 Optionally specify the source IP address or range. Leave empty if the rule should apply to any source IP.
4 Source Port [Optional] Example: any any: Specify the source port or port range from which the traffic originates. any allows traffic from all ports.
5 Destination IP Address Example: 172.16.31.25 Only match incoming traffic with this Destination IP or range. Typically, this is 127.0.0.1.
6 Destination Port Example: 81 Only match incoming traffic originating with the given destination port or port range on the client host.
7 Action Example: DNAT This specifies the action to take either DNAT or SNAT.
8 Internal IP Address Example: 192.168.1.100 Field must not be empty: Specify the internal IP address to which the traffic should be redirected.
9 Internal Port Example: 81 Redirect matched incoming traffic to the given port on the internal host.

Once the user is done with the required configurations, user should click save button and then click on update to save the changes.

3.8 Remote Monitoring

In this page the user can select which device needs to be monitored remotely.

Once the user selects the type of RMS click on save.

NMS:

In this page the user should type the server IP or domain name in the URL then click on save.

Click on upload and start (Once key is uploaded and this option is clicked, NMS automatically starts, and this router device gets registered with the NMS server provided).

TR_069:

To enable the TR_069 the user needs to click on the enable check box.

Once the user clicks on the check box of enable it will display all the required filed to configured.

Specification details are given below:

SN Field Name Sample Value Description
1 Enable TR-069 Enable/Disable When enabled, the device can be remotely managed and configured by a service provider using a TR-069 server.
2 Periodic Enable Enable/Disable It ensures that the device regularly checks in with the management server for updates, configuration changes, or status reports.
3 Accept Server Request Enable/Disable By accepting server requests, the device can be managed in real-time, allowing the server to push updates, configurations, or commands to the device.
4 Serving Interval 300 A value of 300 seconds means the device will check in with the ACS (auto-configuration servers) every 5 minutes.
5 Interface This can be something like eth0 or wan. This specifies the network interface used for TR-069 communication.
6 Username Example: User The username used to authenticate with the ACS.
7 Password •••• The password used to authenticate with the ACS.
8 URL https://167.71.232.131 The URL of the ACS. This is where the CPE (customer-premises equipment) will send its requests and where it will receive configurations and updates from.

The user should fill all the required fields and click on the save button.

3.9 Tunnel

Tunnels are a method of transporting data across a network using protocols which are not supported by that network.

In General Settings, there are 2 tunnels.

1.) GRE Tunnel

2.) IPIP Tunnel

Enable either of them and click on save.

GRE Tunnel:

A GRE (Generic Routing Encapsulation) tunnel configuration involves setting up a virtual point-to-point connection between two endpoints over an IP network.

Here the user can add/edit/delete the details of the tunnel.

EDIT:

Specification details are given below:

SN Field Name Sample Value Description
1 Tunnel name Example: GRETunnel GRETunnel: The name of the GRE tunnel.
2 Local external IP Example: 10.1.1.66 The IP address of the local endpoint that will initiate the GRE tunnel.
3 Remote external IP Example: 10.1.1.40 The IP address of the remote endpoint that will terminate the GRE tunnel.
4 Peer tunnel IP Example: 10.1.1.4 The IP address of the peer's tunnel interface.
5 Local tunnel IP Example: 10.1.1.6 The IP address of the local tunnel interface.
6 Local tunnel net mask Example: 255.255.255.0 The subnet mask of the local tunnel interface.
7 Remote IP Example: 192.168.10.0/24 The remote network that is reachable through the GRE tunnel.
8 Enable Tunnel Link Check to enable Enable or disable the GRE tunnel link.
9 Interface type Example: EWAN2 EWAN2: The type of network interface used for the GRE tunnel.
10 MTU Example: 1476 1476: Maximum Transmission Unit size for the GRE tunnel.
11 TTL Example: 64 64: Time To Live value for the packets within the GRE tunnel.
12 Tunnel key Example: 12345678 12345678: A unique key used to identify the GRE tunnel.
13 Enable keep alive Check to enable Enable or disable the keep-alive feature to monitor the tunnel's status.
14 Keep alive interval Example: 10 10: Interval in seconds for the keep-alive packets.

Once the required update is done then click on update to save the changes.

IPIP Tunnel:

An IPIP (IP-in-IP) tunnel is a simple tunnelling protocol used to encapsulate IP packets within IP packets. This is like GRE but without additional features such as keying and type fields.

Here the user can add/edit/delete the details of the tunnel.

EDIT:

Specification details are given below:

SN Field Name Sample Value Description
1 Tunnel name Example: IPIPTunnel IPIPTunnel: The name of the IPIP tunnel.
2 Local external IP Example: 10.1.1.66 The IP address of the local endpoint that will initiate the IPIP tunnel.
3 Remote external IP Example: 10.1.1.40 The IP address of the remote endpoint that will terminate the IPIP tunnel.
4 Peer tunnel IP Example: 10.1.1.4 The IP address of the peer's tunnel interface.
5 Local tunnel IP Example: 10.1.1.6 The IP address of the local tunnel interface.
6 Local tunnel net mask Example: 255.255.255.0 The subnet mask of the local tunnel interface.
7 Remote IP Example: 192.168.10.0/24 The remote network that is reachable through the IPIP tunnel.
8 Enable Tunnel Link Check to enable Enable or disable the IPIP tunnel link.
9 Interface type Example: EWAN2 EWAN2: The type of network interface used for the IPIP tunnel.
10 MTU Example: 1476 1476: Maximum Transmission Unit size for the IPIP tunnel.
11 TTL Example: 64 64: Time To Live value for the packets within the IPIP tunnel.
12 Tunnel key Example: 12345678 Although typically not used in IPIP, this field might be included for compatibility with certain configurations.
13 Enable keep alive Check to enable Enable or disable the keep-alive feature to monitor the tunnel's status.
14 Keep alive interval Example: 10 10: Interval in seconds for the keep-alive packets.

Once the required update is done then click on update to save the changes.

4. Features

In this module the user can see all the features that the router has.

This module includes the below features.

  • Wifi MacID Filtering
  • Mac Address Binding
  • URL Filtering
  • Web Server
  • SNMP Agent Configuration
  • Others

4.1 Wi-Fi MacID filtering

Wireless MAC ID Filtering allows you to control which devices can connect to your wireless network based on their MAC (Media Access Control) addresses. This can help enhance security by allowing only specified devices to access the network.

It is further divided into 2 categories,

WIFI 2.4G AP

WIFI 2.4G AP Guest

Before adding the MacIDs the user needs to select the mode from the dropdown menu.

In ‘Change Mode’ select one option,

Blacklist

In blacklist mode, you specify which MAC addresses are not allowed to connect to the wireless network. Devices not on the blacklist will be able to connect.

Whitelist

In whitelist mode, you specify which MAC addresses are allowed to connect to the wireless network. Devices not on the whitelist will be blocked.

To Add the MacID the user needs to click on Add New option.

Specification details are given below:

SN Field Name Sample Value Description
1 Status Enable/Disable Enable or disable the MAC ID filtering.
2 MAC ID Example: e8:6f:38:1a:f2:61 The MAC address of the device to be whitelisted or blocklisted.
3 Network Name Example: WIFI 2.4G AP or Wi-Fi 2.4G AP Guest. The network to apply the MAC ID filtering.

Once the required MAC ID and Network Name is configured the user needs to click on the save button to add the details.

The user needs to click on the edit button to do modifications on the pre-existing configuration.

Once the required MACID / Network Name is modified the user needs to click on the update button to reflect the changed value in the application.

4.2 Mac Address Binding

MAC address binding is a configuration that binds a specific MAC address to a specific IP address.

To add multiple devices, click on ‘Add’.

EDIT:

Specification details are given below:

SN Field Name Sample Value Description
1 Device Name Ex: Mac1 A user-defined name for the binding configuration.
2 MAC Address Ex: 48:9e:bd:da:45:91 The unique identifier for the network interface of the device to which the IP address will be bound.
3 IP Address Ex: 192.168.10.55 The IP address that will be consistently assigned to the device with the specified MAC address.

By applying this configuration, the DHCP server will always assign the IP address 192.168.10.55 to the device with the MAC address 48:9e:bd:da:45:91, ensuring consistency and stability in network addressing for that device.

  • Once the user modifies the MAC address /IP Address then click on the save button to save the changes done.
  • The user can click on the deleted button to delete an existing configured device.
  • Post all the changes the user needs to click on the update to reflect all the changes in the application.

Click on save tab once changes have been made.

4.3 URL Filtering

In this submodule the user should provide the URL which needs to be blocked for the device. By implementing URL filtering with the specified URL, you can control and restrict access to certain websites, thereby improving network security and managing user access.

In ‘Change Mode’ select one option,

Blacklist: In blacklist mode, you specify which MAC addresses are not allowed to connect to the wireless network. Devices not on the blacklist will be able to connect.

Whitelist: In whitelist mode, you specify which MAC addresses are allowed to connect to the wireless network. Devices not on the whitelist will be blocked.


To add the new URL for blocking, click on the Add New button.

Once the user clicks on the Add New button a new pop will appear in that page write the URL and click on the save.

The user can select the status of that URL while defining the URL.

To edit / delete the existing URL the user needs to click on the edit /deleted button respectively.

Click on “save” after the changes are done as per the need.

4.4 Web Server

This configuration will allow your device to serve web traffic securely over HTTPS, keep its system time synchronized, and ensure that all HTTP traffic is redirected to HTTPS for better security.

If any of the configuration is changed, please reboot the board.

Specification details are given below.

SN Field Name Sample Value Description
1 Enable HTTP HTTP Port: 80

Enable or disable the HTTP server.

Port 80 is the default port for HTTP traffic. It is used to serve web pages over an unencrypted connection.
2 Enable HTTPS HTTPS Port: 443

Enable or disable the HTTPS server.

Port 443 is the default port for HTTPS traffic. It is used to serve web pages over an encrypted connection.
3 Redirect HTTPS Option to redirect HTTP traffic to HTTPS. When enabled, all HTTP requests will be automatically redirected to the HTTPS port to ensure secure communication.
4 Session Timeout (in secs) Ex: 60secs This setting controls how long a user session remains active without interaction before the server automatically logs the user out.
5 RFC1918 Filter Enable/Disable When enabled, this filter can block traffic from private IP ranges (e.g., 192.168.x.x, 10.x.x.x) from being routed through the public internet, enhancing network security.
6 Enable NTP Sync Enable or disable NTP synchronization. Synchronizes the device’s system clock with an external NTP server to maintain accurate time.
7 NTP Server 0.openwrt.pool.ntp.org The address of the NTP server used for time synchronization. The openwrt.pool.ntp.org server is a public NTP server pool.
8 NTP Sync Interval (In Minutes) 15 The interval at which the device will sync its clock with the NTP server, set to every 15 minutes in this case.

4.5 SNMP Agent Configuration

The SNMP (Simple Network Management Protocol) Agent Configuration is essential for monitoring and managing network devices, such as routers, from a central management system.

Specification details are given below:

SN Field Name Sample Value Description
1 Enable SNMP Service Enable/Disable Enable this if you want the device to be accessible for SNMP-based monitoring and management.
2 IP Family IPV4 Specifies that SNMP service will operate over IPv4.
3 Port 161 161 is the default and should be used unless there is a specific need to use a different port.
4 System OID 1.3.6.1.4.1.38151 This unique identifier represents the device in the SNMP management system.
5 Name Invendis Router The name used to identify the device in the SNMP management system.
6 Contact Invendis@invendis.co The email address of the person responsible for the device, used for administrative contact.
7 Location Bangalore The physical location of the device.
8 SNMP Version Version-1,

Version-2,

Version-3

Version-1: Basic and outdated, offering no security.

Version-2: An improvement over Version-1 with better performance and some security features.

Version-3: The most secure, offering authentication and encryption (AuthPriv).

9 Security       (for SNMP Version-3) NoAuthNoPriv

AuthNoPriv

AuthPriv

No Authentication, No Privacy

Authentication, No Privacy

Authentication and Privacy

10 Username Ex: admin The username used for SNMP authentication.
11 Authentication Password ******* This password is used to authenticate the SNMP user.
12 Privacy Password ******* This password is used to encrypt SNMP messages.
13 Download MIB File Download Click this to download the MIB file associated with the device’s SNMP configuration.

Click on save tab to save changes.

4.6 Others

In this page the user will get to do all the other miscellaneous configuration with respect to the device based on the required parameters. Each utility serves a specific purpose, providing various functionalities for managing and troubleshooting network configurations and statuses.

Specification details are given below:

SN Field Name Sample Value Description
1 Set Date Date and time fields (day, month, year, hour, minute, second) Sets the system date and time to the specified values.
2 Get Date System Retrieves and displays the current system date and time.
3 IP Rule Show Command ‘Get’ Displays the current IP rules configured on the device.
4 Advanced Static Routes Command ‘Run’ Used to manually define routing paths for network traffic.
5 ipsec status all Command ‘Get’ Displays the status of all IPsec connections.
6 iPerf3 Client IP address (e.g., 192.168.10.100) Runs an iPerf3 client to measure network performance.
7 iPerf3 Server Command ‘Run’ Runs an iPerf3 server to measure network performance.
8 Ping IP address or domain (e.g., 8.8.8.8) Sends ICMP echo requests to the specified address to check connectivity.
9 traceroute IP address or domain (e.g., 8.8.8.8) Traces the route packets take to reach the specified address.
10 NTP Sync Command ‘Sync’ Synchronizes the system time with the configured NTP server.
11 Download Files File or database identifier Initiates a download of the specified file or database.
12 Restart Power Command ‘Restart’ Restarts the power of the device.
13 Show Board Configuration Command ‘Show’ Displays the current board configuration.
14 Enable ssh (Admin) Command ‘Run’ Enables SSH access for the admin user.
15 Disable ssh (Admin) Command ‘Run’ Disables SSH access for the admin user.
16 Output Any value Displays output for all the above actions.

5.Maintenance

In this module the user can configure/upgrade/modify the settings related to system, password, firmware and monitoring.

It includes below 7 submodules.

  • General
  • Scheduled Tasks
  • Password
  • Reboot
  • Import and Export config
  • Firmware upgrade
  • Router Software Install/Uninstall

5.1 General

Here you can configure the basic aspects of router like its hostname or the time zone.

It is further sub-divided into,

1.) General Settings

2.) Logging

3.) Language and Style

General Settings:

The System Properties section allows you to manage the general settings of your network device, including time settings, logging, hostname, and language preferences.

Specification details are given below:

SN Field Name Sample Value Description
1 Local Time 2024/08/23 09:44:47 The current local date and time set on the device.
2 Hostname 41B01240016 The hostname of the device, which is used to identify it on the network.
3 Time zone Asia/Kolkata The time zone setting of the device, which determines the local time.

Time Synchronization:

SN Field Name Sample Value Description
1 Enable NTP Client Enable/Disable When enabled, the device periodically syncs its clock with an external NTP server, ensuring the local time remains accurate.
2 Enable NTP Server Enable/Disable When enabled, the device acts as an NTP server, allowing other devices on the network to sync their time with it.
3 NTP Server Candidates 0.openwrt.pool.ntp.org

1.openwrt.pool.ntp.org

2.openwrt.pool.ntp.org

3.openwrt.pool.ntp.org

Provides multiple server options to ensure redundancy and reliability in time synchronization. If one server is unavailable, the device can try another in the list.

You can add or remove any.

Once the user configures the required details then click on save tab.

Logging:

Here the user can configure the basic aspects of your device related to system.

The system log configuration provided specifies how the device handles and stores log information, including buffer size, external log server details, and log detail levels.

Specification details are given below:

SN Field Name Sample Value Description
1 System log buffer size Example: 32 kiB The size of the memory buffer allocated (0-32) for storing system logs before they are either written to a file or sent to an external server.
2 External system log server Example: 0.0.0.0 The IP address of an external server where logs can be sent.
3 External system log server port Example: 514 The port used to send logs to the external log server. Port 514 is the default port for syslog.
4 Log output level 1.) Debug

2.) Info

3.) Notice

4.) Warning

5.) Error

6.) Critical

7.) Alert

8.) Emergency

Debug: Logs all messages, including detailed debugging information. This is the most verbose setting and can be useful for troubleshooting specific issues.

Info: Logs informational messages, which may include normal operational messages.

Notice: Logs normal but significant conditions that aren't errors.

Warning: Logs warning conditions that indicate potential issues.

Error: Logs error conditions that indicate problems.

Critical: Logs critical conditions that require immediate attention.

Alert: Logs alert conditions that require urgent attention.

Emergency: Logs only the most severe conditions that indicate the system is unusable.

5 Cron Log level 1.) Debug

2.) Normal

3.) Warning

Debug: Use for detailed troubleshooting.

Normal: Use for typical monitoring.

Warning: Use to track only issues and errors.


Time Synchronization:

SN Field Name Sample Value Description
1 Enable NTP Client Enable/Disable When enabled, the device periodically syncs its clock with an external NTP server, ensuring the local time remains accurate.
2 Enable NTP Server Enable/Disable When enabled, the device acts as an NTP server, allowing other devices on the network to sync their time with it.
3 NTP Server Candidates 0.openwrt.pool.ntp.org

1.openwrt.pool.ntp.org

2.openwrt.pool.ntp.org

3.openwrt.pool.ntp.org

Provides multiple server options to ensure redundancy and reliability in time synchronization. If one server is unavailable, the device can try another in the list.

You can add or remove any.

Once the user configures the required details then click on save tab.


Language and Style:

Here the user can configure the basic aspects of your device related to language.

Time Synchronization:

SN Field Name Sample Value Description
1 Enable NTP Client Enable/Disable When enabled, the device periodically syncs its clock with an external NTP server, ensuring the local time remains accurate.
2 Enable NTP Server Enable/Disable When enabled, the device acts as an NTP server, allowing other devices on the network to sync their time with it.
3 NTP Server Candidates 0.openwrt.pool.ntp.org

1.openwrt.pool.ntp.org

2.openwrt.pool.ntp.org

3.openwrt.pool.ntp.org

Provides multiple server options to ensure redundancy and reliability in time synchronization. If one server is unavailable, the device can try another in the list.

You can add or remove any.

Once the user configures the required details then click on save tab.

5.2 Scheduled Tasks

This is the system crontab in which scheduled tasks can be defined.

Each asterisk (*) can be replaced with specific values or ranges to schedule the task at a precise time.

*/15 * * * * /root/InterfaceManager/script/TimeSync.sh

  • Description: This script is scheduled to run every 15 minutes.

*/2 * * * * /root/InterfaceManager/script/Check_Monitoring.sh

  • Description: This script is scheduled to run every 2 minutes.

*/1 * * * * /root/InterfaceManager/script/Update_Analytics_data.sh

  • Description: This script is scheduled to run every minute.

Summary:

The crontab entries shown define various scripts that are scheduled to run at regular intervals, ranging from every minute to every hour.

The scripts perform tasks like time synchronization, monitoring checks, analytics data updates, SMS file deletion, IPSec status checks, and VPN status checks.

Important Note: After making any changes to the crontab, make sure to save and possibly restart the cron service to apply the changes.

5.3 Password

In this module the user can set the password for the admin credentials.

Note: Password must contain at least one uppercase letter, one digit, one special character, and be at least 8 characters long.

Save the page once you have changed the password.

5.4 Reboot

In this module the user can reboot the device remotely.

First option is to directly reboot the device without enabling the maintenance reboot tab.

Click on “Reboot Now” at the bottom of the screen to start the reboot process.

To start maintenance reboot process first the user needs to fill all the required fields.


Need to select the type of reboot for the device whether it needs to be Hardware or Software reboot.

Specification details are given below:

SN Field Name Sample Value Description
1 Enable Maintenance Reboot Enable/Disable Indicates whether the maintenance reboot feature is enabled or not.
2 Type Maintenance Reboot Specifies the type of reboot being scheduled.
3 Reboot Type Software/Hardware Hardware: A hardware reboot involves restarting the entire device as if it were powered off and on again.

Software: A software reboot involves restarting the operating system without powering off the hardware.

4 Minutes Example: 59 The minute at which the reboot should occur (0-59).
5 Hours Example: 22 (10 PM) The hour at which the reboot should occur (0-23, in 24-hour format).
6 Day Of Month Example: All Specifies which days of the month the reboot should occur (1-31). "All" means it will occur every day.
7 Month Example: All Specifies which months the reboot should occur (1-12). "All" means it will occur every month.
8 Day Of Week Example: All Specifies which days of the week the reboot should occur (0-6, where 0 is Sunday). "All" means it will occur every day of the week.

5.5 Import and Export

In this section, User can Import & Export Configuration files of the Device.

Click “Export Config” to export device configuration & settings to a text file,

Click “Import Config” to import device configuration & settings from a previously exported text file.

The user needs to select on the “choose file”, upload the required file and click on apply.

5.6 Firmware Upgrade

The user can upgrade with the latest software for the existing firmware.

Click on the flash image and chose the path where the sys-upgrade file is kept and then click on flash image, it will upgrade to the latest software once the reboot is done.

This option will completely reset the device to default settings.

Click on the Retain Config and flash and chose the path where the sys-upgrade file is kept and then click on Retain Config and flash, it will upgrade to the latest software once the reboot is done.

This refers to updating the firmware (flashing) of a device while preserving the current configuration settings.

Click on the Factory Reset for the complete reset of the device.

5.7 Router Software Install/Uninstall

6. Routing

Routing refers to the process of determining the path that data packets take from their source to their destination across networks.

This section is divided into 5 sections,

  • Static Routing
  • BGP (Border Gateway Protocol)
  • OSPF (Open Shortest Path First)
  • Dynamic Custom File
  • Routing Debug

6.1 Static Routing

In this submodule the user can configure the parameters related to routing of the device like Target address, Networks address etc. Routing configurations allow network packets to be directed between different subnets and networks.

It is further divided into 2 sections,

Static IPV4 Routes

Advanced Static IPV4 Routes


Static IPV4 Routes:

Click on ‘Add’ to add a new interface.

EDIT:

To edit the existing device the user needs to click on the edit option.

Once the changes are done click on the save button to save all the changes.

Click on the deleted button to delete the existing device detail.

Specification details are given below:

SN Field Name Sample Value Description
1 Interface Ex: eth0.1 The network interface to be used for this route. Select the one to use from dropdown.
2 Target Ex: 192.168.20.0 The destination subnet to which traffic should be routed.
3 IPv4 Netmask 255.255.255.0 The subnet mask for the target network.
4 Metric 0 The priority of the route.

Lower values indicate higher priority.

5 IPv4 Gateway Ex: 192.168.10.1 The gateway IP address to be used for routing traffic to the target subnet.
6 Route Type Unicast Standard route for individual destination IP addresses.

Custom changes can be made.

Click on save once configuration changes have been made.


Advanced Static IPV4 Routes:

This is further divided into 2 sections,

Routing Tables

Routing Rules for IPV4

Routing Tables:

Adding a new table in static routing allows you to define specific routes for traffic within a network.

Click on ‘Add’ to add a new Table.

EDIT:

Specification details are given below:

SN Field Name Sample Value Description
1 ID of Table Ex: 1 A unique identifier for the routing table. Multiple tables can be used to define different sets of routing rules, providing flexibility in how traffic is managed.
2 Name of Table Ex: Route A descriptive name for the routing table, making it easier to manage and identify different tables.
3 Target Ex: 192.168.10.0 Specifies the destination network or IP address that the route is intended for.
4 IPv4 Netmask 255.255.255.0 Defines the subnet mask for the target network.
5 Metric Ex: 0 Indicates the priority of the route. A lower metric value means a higher priority. Routes with lower metrics are preferred over those with higher metrics.
6 IPv4 Gateway Ex: 10.1.1.1 Specifies the next hop or gateway IP address through which the traffic to the target network should be routed.
7 Route Type 1.) Unicast

2.) Custom

Unicast: Standard route where packets are sent to a single destination IP address.

Custom: Enables advanced routing configurations or specific protocols that might not be covered by default.


Routing Rules for IPV4:

Click on ‘Add’ to add a new interface.

EDIT:

To edit the existing device the user needs to click on the edit option.

Once the changes are done click on the save button to save all the changes.

Click on the deleted button to delete the existing device detail.

Specification details are given below:

SN Field Name Sample Value Description
1 Interface Ex: ra0 Select the specific network interface on the router through which traffic enters or exits.
2 To Ex: 192.168.10.1 The destination IP address or network. In this case, 192.168.10.1 is the target IP address for routing traffic.
3 IPv4 Netmask Ex: 255.255.255.192 Defines the subnet mask, which helps determine the size of the network.
4 Table ID Ex: 1 Identifies which routing table this rule applies to.
5 From Ex: 192.168.100.1 Specifies the source IP address or network from which the traffic originates. In this case, the traffic is coming from 192.168.100.1.
6 Priority Ex:20 Determines the order in which routing rules are evaluated. Lower numbers have higher priority. If two rules conflict, the one with the lower priority number will be applied first.
7 Outgoing Interface 1.) fwmark

2.) iif (Incoming Interface)

3.) oif (Outgoing Interface)

4.) lookup

5.) blackhole

6.) prohibited

7.) unreachable

1.) This allows you to create rules that apply only to traffic that has been marked in a specific way by the firewall.

2.) This is often used to create rules based on the interface through which traffic is received.

3.) This allows you to control the flow of traffic based on the desired outgoing interface.

4.) It tells the router to check the specific routing table ID mentioned to determine how to route the traffic.

5.) This is used when you want to block traffic without notifying the sender.

6.) Like blackhole but sends an ICMP unreachable message to the sender, indicating that the route is prohibited.

7.) Causes the router to send an ICMP unreachable message to the source IP, notifying that the destination is unreachable.

6.2 BGP

BGP is crucial for the operation of the internet, allowing routers to exchange information and find the best paths for data to travel across multiple networks globally.

This section is divided into 5 sub sections,

  • Status
  • General settings
  • Instance
  • Peers
  • Peer Group

The ‘Status’ section will show the status of the connections made.

General Settings:

Specification details are given below:

SN Field Name Sample Value Description
1 Enable BGP Enable/Disable This setting is used to turn on BGP functionality on the router. Once enabled, the router can participate in BGP routing, exchange routing information with other BGP peers.
2 Enable vty Enable/Disable vty refers to the Virtual Terminal lines on a router, which allow remote users to connect to the router using protocols like Telnet or SSH.
3 Password ***** The password is set to secure access to the router's vty lines.

Click on save and update once changes have been made.


Instance:

In configuring BGP on a router, the "BGP Instance" section is critical as it defines the unique settings for BGP operations on that particular router.

Specification details are given below:

SN Field Name Sample Value Description
1 AS Ex: 12 BGP uses AS numbers to maintain separation between different networks and to prevent routing loops.

This field must not be empty because it is essential for BGP to function correctly.

2 Router ID Ex: 192.168.10.12 The Router ID is a unique identifier for the BGP instance within an AS. It helps distinguish between multiple routers within the same AS.
3 Network Import Check Enable/Disable This option enables or disables checking if a route exists in the local routing table before it is advertised to BGP peers.
4 Advertise Networks Ex: 192.168.10.0/24 This field is used to specify which networks should be advertised to BGP peers.
5 Redistribute Options 1.) None

2.) Kernel Added Routes

3.) Connected Routes

4.) OSPF Routes

5.) NHRP Routes

6.) Static Routes

None: No routes are redistributed.

Kernel Added Routes: Routes that are added by the kernel are redistributed.

Connected Routes: Directly connected routes are redistributed.

OSPF Routes: Routes learned through OSPF are redistributed into BGP.

NHRP Routes: Routes discovered through NHRP will be advertised to BGP peers.

Static Routes: Any static routes defined by an administrator will be advertised to BGP peers.

6 Deterministic MED Enable/Disable This option, when enabled, ensures that the router uses a deterministic method to select the best path when there are multiple routes with the same AS path length but different MED values.

Click on save and update once changes have been made.


Peers:

These are other routers with which your router establishes a BGP session to exchange routing information. Peers can be within the same organization or with external networks.

EDIT:

To edit the existing device the user needs to click on the edit option.

Once the changes are done click on the save button to save all the changes.

Click on the deleted button to delete the existing device detail.

Specification details are given below:

SN Field Name Sample Value Description
1 Name Ex: Route This is an identifier that helps you distinguish between different peers or configurations.
2 AS Ex: 12 BGP uses AS numbers to differentiate between different networks.
3 IP Address Ex: 10.1.1.0 Specifies the IP address of the BGP peer.
4 Update Source Ex: loopback Name of the Loopback Interface
5 EBGP MultiHop Ex: 5 The TTL (Time to Live) value that allows BGP to establish a session with a peer multiple hops away. The value 5 means the BGP peer is up to 5 hops away.
6 Password ***** Both peers must have the same password configured to establish a secure BGP session.
7 Weight Ex: 100 A higher weight is preferred, and 100 is a common value for prioritizing routes from this peer.
8 Default Originate Enable/Disable This setting would be enabled if you want your router to advertise a default route (0.0.0.0/0) to the BGP peer, indicating that your router can be used as a default gateway.
9 Next Hop Self Enable/Disable This option would be enabled if you want your router to advertise its own IP address as the next hop for routes sent to the BGP peer.
10 Inbound Soft Reconfiguration Enable/Disable When enabled, this allows for BGP policy changes without resetting the session.
11 Hold Time Ex: 180 (seconds) The maximum time the router will wait before considering the peer is unreachable.
12 Keepalive Time Ex: 60 (seconds) It is typically set to one-third of the Hold Time to ensure the peer is still responsive.
13 Connect Retry Time Ex:120 (seconds) The time the router waits before retrying a connection to the BGP peer if the session fails.

Peer Groups:

Peer groups allow you to group several peers together and apply the same routing policies to them, simplifying the management of BGP configurations.

EDIT:

To edit the existing device the user needs to click on the edit option.

Once the changes are done click on the save button to save all the changes.

Click on the deleted button to delete the existing device detail.

Specification details are given below:

SN Field Name Sample Value Description
1 Name Ex: Route This is an identifier that helps you distinguish between different peers or configurations.
2 AS Ex: 12 BGP uses AS numbers to differentiate between different networks.
3 Neighbor Address 192.168.1.2 This is the IP address of the BGP neighbor (peer) you're establishing a session with.
4 Password **** Both peers must have the same password configured to establish a secure session.
5 Weight Ex: 100 A higher weight is preferred. 100 is a common value used to prioritize routes from this peer.
6 Inbound Soft Reconfiguration Enable/Disable When enabled, this allows for BGP policy changes without resetting the session.
7 Hold Time Ex: 180 (seconds) The maximum time the router will wait before considering the peer is unreachable.
8 Keepalive Time Ex: 60 (seconds) It is typically set to one-third of the Hold Time to ensure the peer is still responsive.
9 Connect Retry Time Ex:120 (seconds) The time the router waits before retrying a connection to the BGP peer if the session fails.

Click on save and update once changes have been made.

6.3 OSPF

OSPF (Open Shortest Path First) is a link-state protocol, which means it builds a complete map (or topology) of the network and uses that map to calculate the shortest path to each destination.

This section is divided into 5 sub sections,

  • Status
  • General settings
  • Instance
  • Network and Area
  • Interface

The ‘Status’ section will show the status of the connections made.

General Settings:

Specification details are given below:

SN Field Name Sample Value Description
1 Enable OSPF Enable/Disable When you enable OSPF, the router starts participating in OSPF processes, such as exchanging routing information with other OSPF-enabled routers and calculating the shortest path to each network.
2 Enable vty Enable/Disable vty refers to the Virtual Terminal lines on a router, which allow remote users to connect to the router using protocols like Telnet or SSH.
3 Password ***** The password is set to secure access to the router's vty lines.

Click on save and update once changes have been made.


Instance:

This setup enables a well-structured and efficient OSPF deployment, ensuring that the right routes are advertised while keeping the OSPF process streamlined by controlling where OSPF traffic is generated.

Specification details are given below:

SN Field Name Sample Value Description
1 Router ID Ex: 192.168.10.12 The Router ID identifies the OSPF router uniquely in the network.
2 Passive Interfaces 1.) None

2.) Loopback

3.) Eth 0.5

4.) custom

None: No interface is set as passive.

loopback: Marks the loopback interface as passive.

eth 0.5: Marks the eth0.5 interface as passive.

custom: Allows you to specify a custom interface name.

Passive interfaces are used when you want to advertise a network in OSPF but do not want to establish OSPF neighbour relationships on that interface, reducing unnecessary OSPF traffic.

3 Redistribute Options 1.) None

2.) Kernel Added Routes

3.) Connected Routes

4.) NHRP Routes

5.) Static Routes

6.) BGP

None: No routes are redistributed.

Kernel Added Routes: Routes that are added by the kernel are redistributed.

Connected Routes: Directly connected routes are redistributed.

NHRP Routes: Routes discovered through NHRP will be advertised to BGP peers.

Static Routes: Any static routes defined by an administrator will be advertised to BGP peers.

BGP: Redistributes routes from Border Gateway Protocol (BGP) into OSPF.

Click on save and update once changes have been made.

Network and Area:

EDIT:

To edit the existing device the user needs to click on the edit option.

Once the changes are done click on the save button to save all the changes.

Specification details are given below:

SN Field Name Sample Value Description
1 Name Ex: Network A descriptive name that helps identify the connection
2 Network Ex: 192.168.25.0/24 This network will be advertised by OSPF to other OSPF routers in the same area.
3 Area Ex: 0.0.0.0 OSPF areas help segment large networks to reduce routing overhead. Area 0.0.0.0 is the backbone area, and all other areas typically connect through this area.


Interface:

The interface determines the physical or logical port through which the connection will be routed.

EDIT:

To edit the existing device the user needs to click on the edit option.

Once the changes are done click on the save button to save all the changes.

Click on the deleted button to delete the existing device detail.

Specification details are given below:

SN Field Name Sample Value Description
1 Name Ex: Route This name helps distinguish between different connections within the router's configuration.
2 Interface 1.) Loopback

2.) Eth0.5

3.) Custom

Loopback: Typically used for internal routing within the router, often for the router's own identification (127.0.0.1).

Eth0.5: Refers to a physical or virtual Ethernet interface on the router

Custom: Allows you to specify a different or specialized interface, depending on your network setup.

3 Priority Ex: 10, 20 A lower priority number (e.g., 10) means this route will be preferred over others with a higher number (e.g., 20) when routing decisions are made.
4 Cost Ex: 10 The cost can be based on bandwidth, where faster links have lower costs.

For example, 10 might be assigned to a high-speed interface, while 100 might be assigned to a slower one.

5 Hello Interval Ex: 10secs Adjusting the Hello Interval can impact OSPF neighbour formation and stability.

Default is usually 10 seconds for broadcast and point-to-point networks.

6 Dead Interval Ex: 40secs This interval determines how long OSPF waits before considering a neighbour lost.

Default is usually 40 seconds (four times the Hello Interval).

7 Retransmit Interval Ex: 5secs It should be set according to the network's performance and reliability.
8 Network Type 1.) Broadcast

2.) Non-broadcast

3.) Point-to-point

4.) Point-to-multipoint

Broadcast: For Ethernet or other broadcast-capable networks where a DR/BDR is elected.

Non-broadcast: For networks that don't support broadcasting, like Frame Relay, where neighbours must be manually configured.

Point-to-point: For direct connections between two routers with no need for a DR/BDR.

Point-to-multipoint: For networks with multiple connections that don’t require a DR/BDR.

The choice of network type should match the physical and logical topology of the network.

9 Authentication 1.) None

2.) General key

3.) MD5

None: No authentication is used.

General key: Uses a simple password (plaintext).

MD5: Uses MD5 hash-based authentication, which is more secure.

Save and update the page once configured.

6.4 Dynamic Routing Custom File Upload

Dynamic Routing Custom File Upload allows you to select and upload a custom configuration file for dynamic routing settings (e.g., OSPF, BGP).

Enable “Upload Custom File”

Upload Custom File:

  • Purpose: Finalizes the selection and prepares the file for uploading to the router.
  • Expected Action: Click "Upload" after selecting your file.
  • Explanation: This action uploads the file to the router, making it available for the router to use or store in its configuration directory.

Once you upload and apply the configuration, the router will update its routing tables or other related settings based on the contents of the custom file.

Use Case:

If you're managing a complex network and need to implement specific dynamic routing protocols or settings not available through the standard router interface, you can upload a custom file with the exact configurations required.

Save and update the page once configured.

6.5 Routing Debug

The "Routing Debug" section provides various utilities and commands to diagnose and monitor routing protocols like BGP (Border Gateway Protocol) and OSPF (Open Shortest Path First).

Specification details are given below:

SN Field Name Sample Value Description
1 Show BGP Summary Command ‘RUN’ Displays a summary of the BGP sessions, including the status of each BGP neighbour.
2 Show BGP Running Config Command ‘RUN’ Displays the current running configuration for BGP.
3 Show IP BGP Command ‘RUN’ Shows the current BGP routing table.
4 Refresh BGP Table Command ‘RUN’ Refreshes the BGP routing table, which can be useful after making changes to BGP configuration.
5 Show BGP Neighbors Ex: 10.1.1.120 Displays detailed information about the BGP neighbor with the specified IP address.
6 Show Received Routes Ex: 10.1.1.120 Shows the routes received from the specified BGP neighbor.
7 Run Custom BGP Command Ex:  show ip bgp summary Allows you to run any custom BGP command to gather specific information.
8 Show OSPF Neighbors router-id Displays the list of OSPF neighbors and their statuses.
9 Show OSPF Route Command ‘RUN’ Displays the OSPF routing table, showing routes learned through OSPF.
10 Show OSPF Database Command ‘RUN’ Shows the OSPF link-state database, which contains all the LSA (Link-State Advertisements) information.
11 Show IP Route Command ‘RUN’ A list of all routes in the routing table, including destination networks, next hops, and metrics.
12 Show IP Rule Command ‘RUN’ Shows IP rules that determine routing decisions based on specific criteria.
13 Show IP Route Table Enter a specific command Displays the content of a specific routing table.
14 Show IP Route Get Ex: 10.1.1.10 (destination IP address) Information on the route to the destination, including the next hop and outgoing interface.
15 Flush IP Routes Cache Command ‘RUN’ Clears the IP route cache, forcing the router to rebuild the cache with fresh data.
16 Output Results The results of the executed commands and utilities are displayed.

7.Logout

Click on log out option to exit the application.